6.1 The Basics of Counting

Introduction

Suppose that a password on a computer system consists of six, seven, or eight characters. Each of these characters must be a digit or a letter of the alphabet. Each password must contain at least one digit. How many such passwords are there? The techniques needed to answer this question and a wide variety of other counting problems will be introduced in this section.

Counting problems arise throughout mathematics and computer science. For example, we must count the successful outcomes of experiments and all the possible outcomes of these experiments to determine probabilities of discrete events. We need to count the number of operations used by an algorithm to study its time complexity.

We will introduce the basic techniques of counting in this section. These methods serve as the foundation for almost all counting techniques.
Basic Counting Principles

We first present two basic counting principles, the **product rule** and the **sum rule**. Then we will show how they can be used to solve many different counting problems.

The product rule applies when a procedure is made up of separate tasks.

THE PRODUCT RULE Suppose that a procedure can be broken down into a sequence of two tasks. If there are \(n_1 \) ways to do the first task and for each of these ways of doing the first task, there are \(n_2 \) ways to do the second task, then there are \(n_1 n_2 \) ways to do the procedure.

Examples 1–10 show how the product rule is used.

EXAMPLE 1
A new company with just two employees, Sanchez and Patel, rents a floor of a building with 12 offices. How many ways are there to assign different offices to these two employees?

Solution:
The procedure of assigning offices to these two employees consists of assigning an office to Sanchez, which can be done in 12 ways, then assigning an office to Patel different from the office assigned to Sanchez, which can be done in 11 ways. By the product rule, there are \(12 \cdot 11 = 132 \) ways to assign offices to these two employees.

EXAMPLE 2
The chairs of an auditorium are to be labeled with an uppercase English letter followed by a positive integer not exceeding 100. What is the largest number of chairs that can be labeled differently?

Solution:
The procedure of labeling a chair consists of two tasks, namely, assigning to the seat one of the 26 uppercase English letters, and then assigning to it one of the 100 possible integers. The product rule shows that there are \(26 \cdot 100 = 2600 \) different ways that a chair can be labeled.

Therefore, the largest number of chairs that can be labeled differently is 2600.

EXAMPLE 3
There are 32 microcomputers in a computer center. Each microcomputer has 24 ports. How many different ports to a microcomputer in the center are there?

Solution:
The procedure of choosing a port consists of two tasks, first picking a microcomputer and then picking a port on this microcomputer. Because there are 32 ways to choose the microcomputer and 24 ways to choose the port no matter which microcomputer has been selected, the product rule shows that there are \(32 \cdot 24 = 768 \) ports.

An extended version of the product rule is often useful. Suppose that a procedure is carried out by performing the tasks \(T_1, T_2, \ldots, T_m \) in sequence. If each task \(T_i, i = 1, 2, \ldots, n_i \), can be done in \(n_i \) ways, regardless of how the previous tasks were done, then there are \(n_1 \cdot n_2 \cdot \ldots \cdot n_m \) ways to carry out the procedure. This version of the product rule can be proved by mathematical induction from the product rule for two tasks (see Exercise 72).

EXAMPLE 4
How many different bit strings of length seven are there?

Solution:
Each of the seven bits can be chosen in two ways, because each bit is either 0 or 1. Therefore, the product rule shows there are a total of \(2^7 = 128 \) different bit strings of length seven.
6.1 The Basics of Counting

EXAMPLE 5 How many different license plates can be made if each plate contains a sequence of three uppercase English letters followed by three digits (and no sequences of letters are prohibited, even if they are obscene)?

Solution: There are 26 choices for each of the three uppercase English letters and ten choices for each of the three digits. Hence, by the product rule there are a total of $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 = 17,576,000$ possible license plates.

EXAMPLE 6 Counting Functions How many functions are there from a set with m elements to a set with n elements?

Solution: A function corresponds to a choice of one of the n elements in the codomain for each of the m elements in the domain. Hence, by the product rule there are $n \cdot n \cdot \ldots \cdot n = n^m$ functions from a set with m elements to one with n elements. For example, there are $5^3 = 125$ different functions from a set with three elements to a set with five elements.

EXAMPLE 7 Counting One-to-One Functions How many one-to-one functions are there from a set with m elements to one with n elements?

Solution: First note that when $m > n$ there are no one-to-one functions from a set with m elements to a set with n elements.

Now let $m \leq n$. Suppose the elements in the domain are a_1, a_2, \ldots, a_m. There are n ways to choose the value of the function at a_1. Because the function is one-to-one, the value of the function at a_2 can be picked in $n - 1$ ways (because the value used for a_1 cannot be used again). In general, the value of the function at a_k can be chosen in $n - k + 1$ ways. By the product rule, there are $n(n - 1)(n - 2) \cdots (n - m + 1)$ one-to-one functions from a set with m elements to one with n elements.

For example, there are $5 \cdot 4 \cdot 3 = 60$ one-to-one functions from a set with three elements to a set with five elements.

EXAMPLE 8 The Telephone Numbering Plan The North American numbering plan (NANP) specifies the format of telephone numbers in the U.S., Canada, and many other parts of North America. A telephone number in this plan consists of 10 digits, which are split into a three-digit area code, a three-digit office code, and a four-digit station code. Because of signaling considerations, there are certain restrictions on some of these digits. To specify the allowable format, let X denote a digit that can take any of the values 0 through 9, let Y denote a digit that can take any of the values 2 through 9, and let Z denote a digit that must be a 0 or a 1. Two numbering plans, which will be called the old plan, and the new plan, will be discussed. (The old plan, in use in the 1960s, has been replaced by the new plan, but the recent rapid growth in demand for new numbers for mobile phones and devices will eventually make even this new plan obsolete. In this example, the letters used to represent digits follow the conventions of the North American Numbering Plan.) As will be shown, the new plan allows the use of more numbers.

In the old plan, the formats of the area code, office code, and station code are NYX, NXX, and $XXXX$, respectively, so that telephone numbers had the form NYX-NXX-$XXXX$. In the new plan, the formats of these codes are NXX, NXX, and $XXXX$, respectively, so that telephone numbers have the form NXX-NXX-$XXXX$. How many different North American telephone numbers are possible under the old plan and under the new plan?

Solution: First note that when $m > n$ there are no one-to-one functions from a set with m elements to a set with n elements.

Now let $m \leq n$. Suppose the elements in the domain are a_1, a_2, \ldots, a_m. There are n ways to choose the value of the function at a_1. Because the function is one-to-one, the value of the function at a_2 can be picked in $n - 1$ ways (because the value used for a_1 cannot be used again). In general, the value of the function at a_k can be chosen in $n - k + 1$ ways. By the product rule, there are $n(n - 1)(n - 2) \cdots (n - m + 1)$ one-to-one functions from a set with m elements to one with n elements.

For example, there are $5 \cdot 4 \cdot 3 = 60$ one-to-one functions from a set with three elements to a set with five elements.
Consequently, applying the product rule again, it follows that under the old plan there are

\[160 \times 640 \times 10,000 = 1,024,000,000 \]

different numbers available in North America. Under the new plan, there are

\[800 \times 800 \times 10,000 = 6,400,000,000 \]

different numbers available.

EXAMPLE 9 What is the value of \(k \) after the following code, where \(n_1, n_2, \ldots, n_m \) are positive integers, has been executed?

\[
k := 0 \quad \text{for } i_1 := 1 \text{ to } n_1 \\
\quad \quad \text{for } i_2 := 1 \text{ to } n_2 \\
\quad \quad \quad \vdots \\
\quad \quad \quad \text{for } i_m := 1 \text{ to } n_m \\
\quad \quad \quad k := k + 1
\]

Solution: The initial value of \(k \) is zero. Each time the nested loop is traversed, 1 is added to \(k \). Let \(T_i \) be the task of traversing the \(i \)th loop. Then the number of times the loop is traversed is the number of ways to do the tasks \(T_1, T_2, \ldots, T_m \). The number of ways to carry out the task \(T_j, j = 1, 2, \ldots, m \), is \(n_j \), because the \(j \)th loop is traversed once for each integer \(i_j \) with \(1 \leq i_j \leq n_j \). By the product rule, it follows that the nested loop is traversed \(n_1n_2\cdots n_m \) times. Hence, the final value of \(k \) is \(n_1n_2\cdots n_m \).

EXAMPLE 10 Counting Subsets of a Finite Set Use the product rule to show that the number of different subsets of a finite set \(S \) is \(2^{|S|} \).

Solution: Let \(S \) be a finite set. List the elements of \(S \) in arbitrary order. Recall from Section 2.2 that there is a one-to-one correspondence between subsets of \(S \) and bit strings of length \(|S| \). Namely, a subset of \(S \) is associated with the bit string with a 1 in the \(i \)th position if the \(i \)th element in the list is in the subset, and a 0 in this position otherwise. By the product rule, there are \(2^{|S|} \) bit strings of length \(|S| \). Hence, \(|P(S)| = 2^{|S|} \). (Recall that we used mathematical induction to prove this fact in Example 10 of Section 5.1.)

The product rule is often phrased in terms of sets in this way: If \(A_1, A_2, \ldots, A_m \) are finite sets, then the number of elements in the Cartesian product of these sets is the product of the number of elements in each set. To relate this to the product rule, note that the task of choosing an element in the Cartesian product \(A_1 \times A_2 \times \cdots \times A_m \) is done by choosing an element in \(A_1 \), an element in \(A_2 \), \ldots, and an element in \(A_m \). By the product rule it follows that

\[
|A_1 \times A_2 \times \cdots \times A_m| = |A_1| \cdot |A_2| \cdots \cdot |A_m|.
\]

EXAMPLE 11 DNA and Genomes The hereditary information of a living organism is encoded using deoxyribonucleic acid (DNA), or in certain viruses, ribonucleic acid (RNA). DNA and RNA are extremely complex molecules, with different molecules interacting in a vast variety of ways to
enable living process. For our purposes, we give only the briefest description of how DNA and RNA encode genetic information.

DNA molecules consist of two strands consisting of blocks known as nucleotides. Each nucleotide contains subcomponents called bases, each of which is adenine (A), cytosine (C), guanine (G), or thymine (T). The two strands of DNA are held together by hydrogen bonds connecting different bases, with A bonding only with T, and C bonding only with G. Unlike DNA, RNA is single stranded, with uracil (U) replacing thymine as a base. So, in DNA the possible base pairs are A-T and C-G, while in RNA they are A-U, and C-G. The DNA of a living creature consists of multiple pieces of DNA forming separate chromosomes. A gene is a segment of a DNA molecule that encodes a particular protein. The entirety of genetic information of an organism is called its genome.

Sequences of bases in DNA and RNA encode long chains of proteins called amino acids. There are 22 essential amino acids for human beings. We can quickly see that a sequence of at least three bases are needed to encode these 22 different amino acids. First note, that because there are four possibilities for each base in DNA, A, C, G, and T, by the product rule there are \(4^2 = 16\) < 22 different sequences of two bases. However, there are \(4^3 = 64\) different sequences of three bases, which provide enough different sequences to encode the 22 different amino acids (even after taking into account that several different sequences of three bases encode the same amino acid).

The DNA of simple living creatures such as algae and bacteria have between \(10^5\) and \(10^7\) links, where each link is one of the four possible bases. More complex organisms, such as insects, birds, and mammals have between \(10^8\) and \(10^{10}\) links in their DNA. So, by the product rule, there are at least \(4^{10^5}\) different sequences of bases in the DNA of simple organisms and at least \(4^{10^8}\) different sequences of bases in the DNA of more complex organisms. These are both incredibly huge numbers, which helps explain why there is such tremendous variability among living organisms. In the past several decades techniques have been developed for determining the genome of different organisms. The first step is to locate each gene in the DNA of an organism. The next task, called gene sequencing, is the determination of the sequence of links on each gene. (Of course, the specific sequence of kinks on these genes depends on the particular individual representative of a species whose DNA is analyzed.) For example, the human genome includes approximately 23,000 genes, each with 1,000 or more links. Gene sequencing techniques take advantage of many recently developed algorithms and are based on numerous new ideas in combinatorics. Many mathematicians and computer scientists work on problems involving genomes, taking part in the fast moving fields of bioinformatics and computational biology.

Soon it won’t be that costly to have your own genetic code found.

We now introduce the sum rule.

THE SUM RULE

If a task can be done either in one of \(n_1\) ways or in one of \(n_2\) ways, where none of the set of \(n_1\) ways is the same as any of the set of \(n_2\) ways, then there are \(n_1 + n_2\) ways to do the task.

EXAMPLE 12

Suppose that either a member of the mathematics faculty or a student who is a mathematics major is chosen as a representative to a university committee. How many different choices are there for this representative if there are 37 members of the mathematics faculty and 83 mathematics majors and no one is both a faculty member and a student?

Solution: There are 37 ways to choose a member of the mathematics faculty and there are 83 ways to choose a student who is a mathematics major. Choosing a member of the mathematics faculty is never the same as choosing a student who is a mathematics major because no one is
both a faculty member and a student. By the sum rule it follows that there are \(37 + 83 = 120\) possible ways to pick this representative.

We can extend the sum rule to more than two tasks. Suppose that a task can be done in one of \(n_1\) ways, in one of \(n_2\) ways, \ldots, or in one of \(n_m\) ways, where none of the set of \(n_i\) ways of doing the task is the same as any of the set of \(n_j\) ways, for all pairs \(i \neq j\) with \(1 \leq i < j \leq m\). Then the number of ways to do the task is \(n_1 + n_2 + \cdots + n_m\). This extended version of the sum rule is often useful in counting problems, as Examples 13 and 14 show. This version of the sum rule can be proved using mathematical induction from the sum rule for two sets. (This is Exercise 71.)

EXAMPLE 13

A student can choose a computer project from one of three lists. The three lists contain 23, 15, and 19 possible projects, respectively. No project is on more than one list. How many possible projects are there to choose from?

Solution: The student can choose a project by selecting a project from the first list, the second list, or the third list. Because no project is on more than one list, by the sum rule there are \(23 + 15 + 19 = 57\) ways to choose a project.

EXAMPLE 14

What is the value of \(k\) after the following code, where \(n_1, n_2, \ldots, n_m\) are positive integers, has been executed?

```plaintext
k := 0
for i_1 := 1 to n_1
    k := k + 1
for i_2 := 1 to n_2
    k := k + 1
    ...
for i_m := 1 to n_m
    k := k + 1
```

Solution: The initial value of \(k\) is zero. This block of code is made up of \(m\) different loops. Each time a loop is traversed, 1 is added to \(k\). To determine the value of \(k\) after this code has been executed, we need to determine how many times we traverse a loop. Note that there are \(n_i\) ways to traverse the \(i\)th loop. Because we only traverse one loop at a time, the sum rule shows that the final value of \(k\), which is the number of ways to traverse one of the \(m\) loops is \(n_1 + n_2 + \cdots + n_m\).

The sum rule can be phrased in terms of sets as: If \(A_1, A_2, \ldots, A_m\) are pairwise disjoint finite sets, then the number of elements in the union of these sets is the sum of the numbers of elements in the sets. To relate this to our statement of the sum rule, note there are \(|A_i|\) ways to choose an element from \(A_i\) for \(i = 1, 2, \ldots, m\). Because the sets are pairwise disjoint, when we select an element from one of the sets \(A_i\), we do not also select an element from a different set \(A_j\). Consequently, by the sum rule, because we cannot select an element from two of these sets at the same time, the number of ways to choose an element from one of the sets, which is the number of elements in the union, is

\[|A_1 \cup A_2 \cup \cdots \cup A_m| = |A_1| + |A_2| + \cdots + |A_m| \text{ when } A_i \cap A_j = \emptyset \text{ for all } i, j.\]

This equality applies only when the sets in question are pairwise disjoint. The situation is much more complicated when these sets have elements in common. That situation will be briefly discussed later in this section and discussed in more depth in Chapter 8.
More Complex Counting Problems

Many counting problems cannot be solved using just the sum rule or just the product rule. However, many complicated counting problems can be solved using both of these rules in combination. We begin by counting the number of variable names in the programming language BASIC. (In the exercises, we consider the number of variable names in JAVA.) Then we will count the number of valid passwords subject to a particular set of restrictions.

EXAMPLE 15

In a version of the computer language BASIC, the name of a variable is a string of one or two alphanumeric characters, where uppercase and lowercase letters are not distinguished. (An alphanumeric character is either one of the 26 English letters or one of the 10 digits.) Moreover, a variable name must begin with a letter and must be different from the five strings of two characters that are reserved for programming use. How many different variable names are there in this version of BASIC?

Solution: Let \(V \) equal the number of different variable names in this version of BASIC. Let \(V_1 \) be the number of these that are one character long and \(V_2 \) be the number of these that are two characters long. Then by the sum rule,

\[
V = V_1 + V_2.
\]

Note that \(V_1 = 26 \), because a one-character variable name must be a letter. Furthermore, by the product rule there are \(26 \times 36 \) strings of length two that begin with a letter and end with an alphanumeric character. However, five of these are excluded, so \(V_2 = 26 \times 36 - 5 = 931 \). Hence, there are

\[
V = V_1 + V_2 = 26 + 931 = 957
\]

different names for variables in this version of BASIC.

EXAMPLE 16

Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

Solution: Let \(P \) be the total number of possible passwords, and let \(P_6 \), \(P_7 \), and \(P_8 \) denote the number of possible passwords of length 6, 7, and 8, respectively. By the sum rule,

\[
P = P_6 + P_7 + P_8.
\]

We will now find \(P_6 \), \(P_7 \), and \(P_8 \). Finding \(P_6 \) directly is difficult. To find \(P_6 \) it is easier to find the number of strings of uppercase letters and digits that are six characters long, including those with no digits, and subtract from this the number of strings with no digits. By the product rule, the number of strings of six characters is \(36^6 \), and the number of strings with no digits is \(26^6 \).

\[
P_6 = 36^6 - 26^6 = 2,176,782,336 - 308,915,776 = 1,867,866,560.
\]

Similarly, we have

\[
P_7 = 36^7 - 26^7 = 78,364,164,096 - 8,031,810,176 = 70,332,353,920
\]

and

\[
P_8 = 36^8 - 26^8 = 2,821,109,907,456 - 208,827,064,576 = 2,612,282,842,880.
\]

Consequently,

\[
P = P_6 + P_7 + P_8 = 2,684,483,063,360.
\]

EXAMPLE 17

Counting Internet Addresses In the Internet, which is made up of interconnected physical networks of computers, each computer (or more precisely, each network connection of a computer) is assigned an Internet address. In Version 4 of the Internet Protocol (IPv4), now in use,
an address is a string of 32 bits. It begins with a network number (netid), which identifies a computer as a member of a particular network.

Three forms of addresses are used, with different numbers of bits used for netids and hostids. **Class A addresses**, used for the largest networks, consist of 0, followed by a 7-bit netid and a 24-bit hostid. **Class B addresses**, used for medium-sized networks, consist of 10, followed by a 14-bit netid and a 16-bit hostid. **Class C addresses**, used for the smallest networks, consist of 110, followed by a 21-bit netid and an 8-bit hostid. There are several restrictions on addresses because of special uses: 1111111 is not available as the netid of a Class A network, and the hostids consisting of all 0s and all 1s are not available for use in any network. A computer on the Internet has either a Class A, a Class B, or a Class C address. (Besides Class A, B, and C addresses, there are also Class D addresses, reserved for use in multicasting when multiple computers are addressed at a single time, consisting of 1110 followed by 28 bits, and Class E addresses, reserved for future use, consisting of 11110 followed by 27 bits. Neither Class D nor Class E addresses are assigned as the IPv4 address of a computer on the Internet.)

The lack of available IPv4 address has become a crisis!

![The lack of available IPv4 address has become a crisis!](image)

The Subtraction Rule (Inclusion–Exclusion for Two Sets)

Suppose that a task can be done in one of two ways, but some of the ways to do it are common to both ways. In this situation, we cannot use the sum rule to count the number of ways to do the task. If we add the number of ways to do the tasks in these two ways, we get an overcount of the total number of ways to do it, because the ways to do the task that are common to the two ways are counted twice. To correctly count the number of ways to do the two tasks, we must subtract the number of ways that are counted twice. This leads us to an important counting rule.

![Overcounting is perhaps the most common enumeration error.](image)
The subtraction rule is also known as the principle of inclusion–exclusion, especially when it is used to count the number of elements in the union of two sets. Suppose that A_1 and A_2 are sets. Then, there are $|A_1|$ ways to select an element from A_1 and $|A_2|$ ways to select an element from A_2. The number of ways to select an element from A_1 or from A_2, that is, the number of ways to select an element from their union, is the sum of the number of ways to select an element from A_1 and the number of ways to select an element from A_2, minus the number of ways to select an element that is in both A_1 and A_2. Because there are $|A_1 \cup A_2|$ ways to select an element in either A_1 or in A_2, and $|A_1 \cap A_2|$ ways to select an element common to both sets, we have

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

This is the formula given in Section 2.2 for the number of elements in the union of two sets.

Example 18 illustrates how we can solve counting problems using the subtraction principle.

EXAMPLE 18

How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution:

We can construct a bit string of length eight that either starts with a 1 bit or ends with the two bits 00, by constructing a bit string of length eight beginning with a 1 bit or by constructing a bit string of length eight that begins with a 1 in $2^7 = 128$ ways. This follows by the product rule, because the first bit can be chosen in only one way and each of the other seven bits can be chosen in two ways. Similarly, we can construct a bit string of length eight ending with the two bits 00, in $2^6 = 64$ ways. This follows by the product rule, because each of the first six bits can be chosen in two ways and the last two bits can be chosen in only one way.

Some of the ways to construct a bit string of length eight starting with a 1 are the same as the ways to construct a bit string of length eight that ends with the two bits 00. There are $2^5 = 32$ ways to construct such a string. This follows by the product rule, because the first bit can be chosen in only one way, each of the second through the sixth bits can be chosen in two ways, and the last two bits can be chosen in one way. Consequently, the number of bit strings of length eight that begin with a 1 or end with a 00, which equals the number of ways to construct a bit string of length eight that begins with a 1 or that ends with 00, equals $128 + 64 - 32 = 160$.

We present an example that illustrates how the formulation of the principle of inclusion–exclusion can be used to solve counting problems.

EXAMPLE 19

A computer company receives 350 applications from computer graduates for a job planning a line of new Web servers. Suppose that 220 of these applicants majored in computer science, 147 majored in business, and 51 majored both in computer science and in business. How many of these applicants majored neither in computer science nor in business?

Solution:

To find the number of these applicants who majored neither in computer science nor in business, we can subtract the number of students who majored either in computer science or in business (or both) from the total number of applicants. Let A_1 be the set of students who majored in computer science and A_2 the set of students who majored in business. Then $A_1 \cup A_2$ is the set of students who majored in computer science or business (or both), and $A_1 \cap A_2$ is the
set of students who majored both in computer science and in business. By the subtraction rule
the number of students who majored either in computer science or in business (or both) equals
\[|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2| = 220 + 147 - 51 = 316. \]
We conclude that 350 - 316 = 34 of the applicants majored neither in computer science nor in
business.

The subtraction rule, or the principle of inclusion–exclusion, can be generalized to find the
number of ways to do one of \(n \) different tasks or, equivalently, to find the number of elements
in the union of \(n \) sets, whenever \(n \) is a positive integer. We will study the inclusion–exclusion
principle and some of its many applications in Chapter 8.

The Division Rule

We have introduced the product, sum, and subtraction rules for counting. You may wonder
whether there is also a division rule for counting. In fact, there is such a rule, which can be
useful when solving certain types of enumeration problems.

THE DIVISION RULE There are \(\frac{n}{d} \) ways to do a task if it can be done using a procedure
that can be carried out in \(n \) ways, and for every way \(w \), exactly \(d \) of the \(n \) ways correspond
to way \(w \).

We can restate the division rule in terms of sets: "If the finite set \(A \) is the union of \(n \) pairwise
disjoint subsets each with \(d \) elements, then \(n = |A|/d \)."

We can also formulate the division rule in terms of functions: "If \(f \) is a function from \(A \) to \(B \)
where \(A \) and \(B \) are finite sets, and that for every value \(y \in B \) there are exactly \(d \) values
\(x \in A \) such that \(f(x) = y \) (in which case, we say that \(f \) is \(d \)-to-one), then \(|B| = |A|/d \)."

We illustrate the use of the division rule for counting with an example.

EXAMPLE 20 How many different ways are there to seat four people around a circular table, where two
seatings are considered the same when each person has the same left neighbor and the same
right neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the rest of the
seats in numerical order, proceeding clockwise around the table. Note that are four ways to
select the person for seat 1, three ways to select the person for seat 2, two ways to select the
person for seat 3, and one way to select the person for seat 4. Thus, there are \(4! = 24 \) ways to
order the given four people for these seats. However, each of the four choices for seat 1 leads
to the same arrangement, as we distinguish two arrangements only when one of the people has
a different immediate left or immediate right neighbor. Because there are four ways to choose
the person for seat 1, by the division rule there are \(24/4 = 6 \) different seating arrangements of
four people around the circular table.

Tree Diagrams

Counting problems can be solved using **tree diagrams**. A tree consists of a root, a number
of branches leaving the root, and possible additional branches leaving the endpoints of other
branches. (We will study trees in detail in Chapter 11.) To use trees in counting, we use a branch
to represent each possible choice. We represent the possible outcomes by the leaves, which are
the endpoints of branches not having other branches starting at them.

Note that when a tree diagram is used to solve a counting problem, the number of choices
of which branch to follow to reach a leaf can vary (see Example 21, for example).
6.1 The Basics of Counting

EXAMPLE 21 How many bit strings of length four do not have two consecutive 1s?

Solution: The tree diagram in Figure 2 displays all bit strings of length four without two consecutive 1s. We see that there are eight bit strings of length four without two consecutive 1s.

EXAMPLE 22 A playoff between two teams consists of at most five games. The first team that wins three games wins the playoff. In how many different ways can the playoff occur?

Solution: The tree diagram in Figure 3 displays all the ways the playoff can proceed, with the winner of each game shown. We see that there are 20 different ways for the playoff to occur.

EXAMPLE 23 Suppose that “I Love New Jersey” T-shirts come in five different sizes: S, M, L, XL, and XXL. Further suppose that each size comes in four colors, white, red, green, and black, except for XL, which comes only in red, green, and black, and XXL, which comes only in green and black. How many different shirts does a souvenir shop have to stock to have at least one of each available size and color of the T-shirt?

Solution: The tree diagram in Figure 4 displays all possible size and color pairs. It follows that the souvenir shop owner needs to stock 17 different T-shirts.

\[W = \text{white, } R = \text{red, } G = \text{green, } B = \text{black} \]

FIGURE 3 Best Three Games Out of Five Playoffs.

FIGURE 4 Counting Varieties of T-Shirts.
1. There are 18 mathematics majors and 325 computer science majors at a college.
 a) In how many ways can two representatives be picked so that one is a mathematics major and the other is a computer science major?
 b) In how many ways can one representative be picked who is either a mathematics major or a computer science major?

2. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

3. A multiple-choice test contains 10 questions. There are four possible answers for each question.
 a) In how many ways can a student answer the questions on the test if the student answers every question?
 b) In how many ways can a student answer the questions on the test if the student can leave answers blank?

4. A particular brand of shirt comes in 12 colors, has a male version and a female version, and comes in three sizes for each sex. How many different types of this shirt are made?

5. Six different airlines fly from New York to Denver and seven fly from Denver to San Francisco. How many different pairs of airlines can you choose on which to book a trip from New York to San Francisco via Denver, when you pick an airline for the flight to Denver and an airline for the continuation flight to San Francisco?

6. There are four major auto routes from Boston to Detroit and six from Detroit to Los Angeles. How many major auto routes are there from Boston to Los Angeles via Detroit?

7. How many different three-letter initials can people have?

8. How many different three-letter initials with none of the letters repeated can people have?

9. How many different three-letter initials begin with an A?

10. How many bit strings are there of length eight?

11. How many bit strings of length ten both begin and end with 1?

12. How many bit strings are there of length six or less, not counting the empty string?

13. How many bit strings with length not exceeding n, where n is a positive integer, consist entirely of 1s, not counting the empty string?

14. How many bit strings of length n, where n is a positive integer, start and end with 1s?

15. How many bit strings are there of lowercase letters of length four or less, not counting the empty string?

16. How many strings are there of four lowercase letters that have the letter x in them?

17. How many strings of five ASCII characters contain the character @ (“at” sign) at least once? (Note: There are 128 different ASCII characters.

18. How many 5-element DNA sequences
 a) end with A?
 b) start with T and end with G?
 c) contain only A and T?
 d) do not contain C?

19. How many 6-element RNA sequences
 a) do not contain U?
 b) end with GU?
 c) start with C?
 d) contain only A or U?

20. How many positive integers between 5 and 31
 a) are divisible by 3? Which integers are these?
 b) are divisible by 4? Which integers are these?
 c) are divisible by 3 and by 4? Which integers are these?

21. How many positive integers between 50 and 100
 a) are divisible by 7? Which integers are these?
 b) are divisible by 11? Which integers are these?
 c) are divisible by both 7 and 11? Which integers are these?

22. How many positive integers less than 1000
 a) are divisible by 9?
 b) are divisible by 9 but not by 11?
 c) are divisible by 9 and 11?
 d) are divisible by 9 or 11?
 e) are divisible by exactly one of 9 and 11?
 f) are divisible by neither 9 nor 11?
 g) have distinct digits?
 h) have distinct digits and are even?

23. How many positive integers between 100 and 999 inclusive
 a) are divisible by 9?
 b) are even?
 c) have the same three decimal digits?
 d) are not divisible by 9?
 e) are divisible by 3 or 4?
 f) are not divisible by either 3 or 4?
 g) are divisible by 9 but not by 4?
 h) are divisible by 9 and 4?

24. How many positive integers between 1000 and 9999 inclusive
 a) are divisible by 9?
 b) are even?
 c) have distinct digits?
 d) are not divisible by 3?
 e) are divisible by 5 or 7?
 f) are divisible by 5 or 7?
 g) are divisible by 5 but not by 7?
 h) are divisible by 5 and 7?
25. How many strings of three decimal digits do not contain the same digit three times?
 a) 34.
 b) 33.
 c) 32.
 d) 31.
 e) 30.

26. How many strings of four decimal digits do not contain the same digit twice?
 a) 10 elements to sets with the following number of elements?
 b) 11.
 c) 12.
 d) 13.
 e) 14.

27. How many strings of eight uppercase English letters are there?
 a) that start and end with X and contain at least one vowel, if letters can be repeated.
 b) that start with X, if letters cannot be repeated?
 c) that contain exactly one vowel, if letters can be repeated.
 d) that start with a vowel, if letters cannot be repeated?
 e) that start with a vowel, if letters can be repeated?

28. How many license plates can be made using either three digits followed by three uppercase English letters or three uppercase English letters followed by three digits?
 a) that contain no vowels, if letters can be repeated.
 b) that contain all four bases A, T, C, and G?
 c) that contain exactly three of the four bases A, T, C, and G?
 d) that do not contain all four bases A, U, C, and G?
 e) that do not contain the sequence CUG?

29. How many license plates can be made using either two uppercase English letters followed by four digits or two digits followed by four uppercase English letters?
 a) that contain no vowels, if letters can be repeated.
 b) that contain exactly one vowel, if letters can be repeated.
 c) that contain at least one vowel, if letters can be repeated.
 d) that contain exactly one vowel, if letters can be repeated.
 e) that contain at least one vowel, if letters can be repeated.

30. How many license plates can be made using either three uppercase English letters followed by three digits or four uppercase English letters followed by two digits?
 a) that contain no vowels, if letters can be repeated.
 b) that contain exactly one vowel, if letters can be repeated.
 c) that contain at least one vowel, if letters can be repeated.

31. How many license plates can be made using either two or three uppercase English letters followed by either two or three digits?
 a) that contain no vowels, if letters can be repeated.
 b) that contain exactly one vowel, if letters can be repeated.
 c) that contain at least one vowel, if letters can be repeated.

32. How many strings of eight uppercase English letters are there?
 a) that contain no vowels, if letters can be repeated.
 b) that contain exactly one vowel, if letters can be repeated.
 c) that contain at least one vowel, if letters can be repeated.

33. How many strings of eight English letters are there?
 a) that contain no vowels, if letters can be repeated.
 b) that contain exactly one vowel, if letters can be repeated.
 c) that contain at least one vowel, if letters can be repeated.

34. How many different functions are there from a set with 10 elements to sets with the following numbers of elements?
 a) 2 elements.
 b) 3.
 c) 4.
 d) 5.

35. How many one-to-one functions are there from a set with five elements to sets with the following number of elements?
 a) 4.
 b) 5.
 c) 6.
 d) 7.

36. How many functions are there from the set \(\{1, 2, \ldots, n\} \) to the set \(\{0, 1\} \)?
 a) 2.
 b) 5.
 c) 6.
 d) 7.

37. How many functions are there from the set \(\{1, 2, \ldots, n\} \) to the set \(\{0, 1, 2\} \)?
 a) 2.
 b) 5.
 c) 6.
 d) 7.

38. How many partial functions (see Section 2.3) are there from a set with five elements to sets with each of these number of elements?
 a) 1.
 b) 2.
 c) 3.
 d) 4.
 e) 5.

39. How many ways are there to seat four of a group of ten people around a circular table where two seatings are considered the same when everyone has the same immediate left and immediate right neighbor?
 a) 2.
 b) 3.
 c) 4.
 d) 5.

40. How many subsets of a set with 100 elements have more than one element?
 a) 4.
 b) 5.
 c) 6.
 d) 7.

41. A palindrome is a string whose reversal is identical to the string. How many bit strings of length \(n \) are palindromes?
 a) 2.
 b) 3.
 c) 4.

42. How many 4-element DNA sequences do not contain the base T?
 a) 2.
 b) 3.
 c) 4.

43. How many 4-element RNA sequences do not contain the base U?
 a) 2.
 b) 3.
 c) 4.

44. How many ways are there to seat four of a group of ten people around a circular table where two seatings are considered the same when everyone has the same immediate left and immediate right neighbor?
 a) 2.
 b) 3.
 c) 4.

45. How many ways are there to seat six people around a circular table where two seatings are considered the same when everyone has the same two neighbors without regard to whether they are right or left neighbors?
 a) 2.
 b) 3.
 c) 4.

46. In how many ways can a photographer at a wedding arrange 6 people in a row from a group of 10 people, where the bride and the groom are among these 10 people, if
 a) the bride must be in the picture?
 b) both the bride and groom must be in the picture?
 c) exactly one of the bride and the groom is in the picture?

47. In how many ways can a photographer at a wedding arrange six people in a row, including the bride and groom, if
 a) the bride must be next to the groom?
 b) the bride is not next to the groom?
 c) the bride is positioned somewhere to the left of the groom?
48. How many bit strings of length seven either begin with two 0s or end with three 1s?

49. How many bit strings of length 10 either begin with three 0s or end with two 0s?

50. How many bit strings of length 10 contain either five consecutive 0s or five consecutive 1s?

**51. How many bit strings of length eight contain either three consecutive 0s or four consecutive 1s?

52. Every student in a discrete mathematics class is either a computer science major or is a joint major in these two subjects. How many students are in the class if there are 38 computer science majors (including joint majors), 23 mathematics majors (including joint majors), and 7 joint majors?

53. How many positive integers not exceeding 100 are divisible either by 4 or by 6?

54. How many different initials can someone have if a person has at least two, but no more than five, different initials? Assume that each initial is one of the 26 uppercase letters of the English language.

55. Suppose that a password for a computer system must have at least 8, but no more than 12, characters, where each character in the password is a lowercase English letter, an uppercase English letter, a digit, or one of the six special characters $\ast, \ast, >, <, \$, and $\&$.

a) How many different passwords are available for this computer system?

b) How many of these passwords contain at least one occurrence of at least one of the six special characters?

c) Using your answer to part (a), determine how long it takes a hacker to try every possible password, assuming that it takes one nanosecond for a hacker to check each possible password.

56. The name of a variable in the C programming language is a string that can contain uppercase letters, lowercase letters, digits, or underscores. Further, the first character in the string must be a letter, either uppercase or lowercase, or an underscore. If the name of a variable is determined by its first eight characters, how many different variables can be named in C? (Note that the name of a variable may contain fewer than eight characters.)

57. The name of a variable in the JAVA programming language is a string of between 1 and 65,535 characters, inclusive, where each character can be an uppercase or a lowercase letter, a dollar sign, an underscore, or a digit, except that the first character must not be a digit. Determine the number of different variable names in JAVA.

58. The International Telecommunications Union (ITU) specifies that a telephone number must consist of a country code with between 1 and 3 digits, except that the code 0 is not available for use as a country code, followed by a number with at most 15 digits. How many available possible telephone numbers are there that satisfy these restrictions?

59. Suppose that at some future time every telephone in the world is assigned a number that contains a country code 1 to 3 digits long, that is, of the form X, XX, or XXX, followed by a 10-digit telephone number of the form $XXX-XXX-XXXX$ (as described in Example 8). How many different telephone numbers would be available worldwide under this numbering plan?

60. A key in the Vigenère cryptosystem is a string of English letters, where the case of the letters does not matter. How many different keys for this cryptosystem are there with three, four, five, or six letters?

61. A wired equivalent privacy (WEP) key for a wireless fidelity (WFi) network is a string of either 10, 26, or 58 hexadecimal digits. How many different WEP keys are there?

62. Suppose that p and q are prime numbers and that $n \equiv pq$. Use the principle of inclusion–exclusion to find the number of positive integers not exceeding a that are relatively prime to n.

63. Use the principle of inclusion–exclusion to find the number of positive integers less than 1,000,000 that are not divisible by either 4 or by 6.

64. Use a tree diagram to find the number of bit strings of length four with no three consecutive 0s.

65. How many ways are there to arrange the letters a, b, c, and d such that a is not followed immediately by b?

66. Use a tree diagram to find the number of ways that the World Series can occur, where the first team that wins four games out of seven wins the series.

67. Use a tree diagram to determine the number of subsets of $\{3, 7, 9, 11, 24\}$ with the property that the sum of the elements in the subset is less than 28.

68. a) Suppose that a store sells six varieties of soft drinks: cola, ginger ale, orange, root beer, lemonade, and cream soda. Use a tree diagram to determine the number of different types of bottles the store must stock to have all varieties available in all size bottles if all varieties are available in 12-ounce bottles, all but lemonade are available in 20-ounce bottles, only cola and ginger ale are available in 32-ounce bottles, and all but lemonade and cream soda are available in 64-ounce bottles.

b) Answer the question in part (a) using counting rules.

69. a) Suppose that a popular style of running shoe is available for both men and women. The woman's shoe comes in sizes 6, 7, 8, and 9, and the man's shoe comes in sizes 8, 9, 10, 11, and 12. The man's shoe comes in white and black, while the woman's shoe comes in white, red, and black. Use a tree diagram to determine the number of different shoes that a store has to stock to have at least one pair of this type of running shoe for all available sizes and colors for both men and women.

b) Answer the question in part (a) using counting rules.

*70. Use the product rule to show that there are 2^7 different truth tables for propositions in 7 variables.
71. Use mathematical induction to prove the sum rule for \(m \) tasks from the sum rule for two tasks.

72. Use mathematical induction to prove the product rule for \(m \) tasks from the product rule for two tasks.

73. How many diagonals does a convex polygon with \(n \) sides have? (Recall that a polygon is convex if every line segment connecting two points in the interior or boundary of the polygon lies entirely within this set and that a diagonal of a polygon is a line segment connecting two vertices that are not adjacent.)

74. Data are transmitted over the Internet in datagrams, which are structured blocks of bits. Each datagram contains header information organized into a maximum of 14 different fields (specifying many things, including the source and destination addresses) and a data area that contains the actual data that are transmitted. One of the 14 header fields is the header length field (denoted by HLEN), which is specified by the protocol to be 4 bits long and that specifies the header length in terms of 32-bit blocks of bits. For example, if HLEN = 0110, the header is made up of six 32-bit blocks. Another of the 14 header fields is the 16-bit-long total length field (denoted by TOTAL LENGTH), which specifies the length in bits of the entire datagram, including both the header fields and the data area. The length of the data area is the total length of the datagram minus the length of the header.

a) The largest possible value of TOTAL LENGTH (which is 16 bits long) determines the maximum total length in octets (blocks of 8 bits) of an Internet datagram. What is this value?

b) The largest possible value of HLEN (which is 4 bits long) determines the maximum total header length in 32-bit blocks. What is this value? What is the maximum total header length in octets?

c) The minimum (and most common) header length is 20 octets. What is the maximum total length in octets of the data area of an Internet datagram?

d) How many different strings of octets in the data area can be transmitted if the header length is 20 octets and the total length is as long as possible?

6.2 The Pigeonhole Principle

Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are 20 pigeons but only 19 pigeonholes, at least one of these 19 pigeonholes must have at least two pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it, at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle called the pigeonhole principle, which states that if there are more pigeons than pigeonholes, then there must be at least one pigeonhole with at least two pigeons in it (see Figure 1). Of course, this principle applies to other objects besides pigeons and pigeonholes.

THEOREM 1

THE PIGEONHOLE PRINCIPLE If \(k \) is a positive integer and \(k + 1 \) or more objects are placed into \(k \) boxes, then there is at least one box containing two or more of the objects.

![Figure 1](image_url)

FIGURE 1 There Are More Pigeons Than Pigeonholes.
Proof: We prove the pigeonhole principle using a proof by contraposition. Suppose that none of the \(k \) boxes contains more than one object. Then the total number of objects would be at most \(k \). This is a contradiction, because there are at least \(k + 1 \) objects.

The pigeonhole principle is also called the Dirichlet drawer principle, after the nineteenth-century German mathematician G. Lejeune Dirichlet, who often used this principle in his work. (Dirichlet was not the first person to use this principle; a demonstration that there were at least two Parisians with the same number of hairs on their heads dates back to the 17th century—see Exercise 33.) It is an important additional proof technique supplementing those we have developed in earlier chapters. We introduce it in this chapter because of its many important applications to combinatorics.

We will illustrate the usefulness of the pigeonhole principle. We first show that it can be used to prove a useful corollary about functions.

Corollary 1

A function \(f \) from a set with \(k + 1 \) or more elements to a set with \(k \) elements is not one-to-one.

Proof: Suppose that for each element \(y \) in the codomain of \(f \) we have a box that contains all elements \(x \) of the domain of \(f \) such that \(f(x) = y \). Because the domain contains \(k + 1 \) or more elements and the codomain contains only \(k \) elements, the pigeonhole principle tells us that one of these boxes contains two or more elements \(x \) of the domain. This means that \(f \) cannot be one-to-one.

Examples 1–3 show how the pigeonhole principle is used.

Example 1

Among any group of 367 people, there must be at least two with the same birthday, because there are only 366 possible birthdays.

Example 2

In any group of 27 English words, there must be at least two that begin with the same letter, because there are 26 letters in the English alphabet.

Example 3

How many students must be in a class to guarantee that at least two students receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 points?

Solution: There are 101 possible scores on the final. The pigeonhole principle shows that among any 102 students there must be at least 2 students with the same score.

G. LEJEUNE DIRICHLET (1805–1859)

G. Lejeune Dirichlet was born into a Belgian family living near Cologne, Germany. His father was a postmaster. He became passionate about mathematics at a young age. He was spending all his spare money on mathematics books by the time he entered secondary school in Bonn at the age of 12. At 14 he entered the Jesuit College in Cologne, and at 16 he began his studies at the University of Paris. In 1825 he returned to Germany and was appointed to a position at the University of Breslau. In 1828 he moved to the University of Berlin. In 1855 he was chosen to succeed Gauss at the University of Göttingen. Dirichlet is said to be the first person to master Gauss’s *Disquisitiones Arithmeticae*, which appeared 20 years earlier. He is said to have kept a copy at his side even when he traveled. Dirichlet made many important discoveries in number theory, including the theorem that there are infinitely many primes in arithmetical progressions \(an + b \) when \(a \) and \(b \) are relatively prime. He proved the \(n = 5 \) case of Fermat’s last theorem, that there are no nontrivial solutions in integers to \(x^5 + y^5 = z^5 \).

Dirichlet also made many contributions to analysis. Dirichlet was considered to be an excellent teacher who could explain ideas with great clarity. He was married to Rebecca Mendelssohn, one of the sisters of the composer Frederick Mendelssohn.
The pigeonhole principle is a useful tool in many proofs, including proofs of surprising results, such as that given in Example 4.

EXAMPLE 4

Show that for every integer \(n \) there is a multiple of \(n \) that has only 0s and 1s in its decimal expansion.

Solution: Let \(n \) be a positive integer. Consider the \(n+1 \) integers 1, 11, 111, \ldots, 11\ldots 1 \ (where the last integer in this list is the integer with \(n+1 \) 1s in its decimal expansion). Note that there are \(n \) possible remainders when an integer is divided by \(n \). Because there are \(n+1 \) integers in this list, by the pigeonhole principle there must be two with the same remainder when divided by \(n \). The larger of these integers less the smaller one is a multiple of \(n \), which has a decimal expansion consisting entirely of 0s and 1s.

The Generalized Pigeonhole Principle

The pigeonhole principle states that there must be at least two objects in the same box when there are more objects than boxes. However, even more can be said when the number of objects exceeds a multiple of the number of boxes. For instance, among any set of 21 decimal digits there must be 3 that are the same. This follows because when 21 objects are distributed into 10 boxes, one box must have more than 2 objects.

THEOREM 2

THE GENERALIZED PIGEONHOLE PRINCIPLE If \(N \) objects are placed into \(k \) boxes, then there is at least one box containing at least \(\lceil N/k \rceil \) objects.

Proof: We will use a proof by contraposition. Suppose that none of the boxes contains more than \(\lceil N/k \rceil - 1 \) objects. Then, the total number of objects is at most

\[
k \left(\left\lceil \frac{N}{k} \right\rceil - 1 \right) < k \left(\frac{N}{k} + 1 \right) - 1 = N,
\]

where the inequality \(\lceil N/k \rceil < (N/k) + 1 \) has been used. This is a contradiction because there are a total of \(N \) objects.

A common type of problem asks for the minimum number of objects such that at least \(r \) of these objects must be in one of \(k \) boxes when these objects are distributed among the boxes. When we have \(N \) objects, the generalized pigeonhole principle tells us there must be at least \(r \) objects in one of the boxes as long as \(\lceil N/k \rceil \geq r \). The smallest integer \(N \) with \(N/k > r - 1 \), namely, \(N = k(r-1) + 1 \), is the smallest integer satisfying the inequality \(\lceil N/k \rceil \geq r \). Could a smaller value of \(N \) suffice? The answer is no, because if we had \(k(r-1) \) objects, we could put \(r-1 \) of them in each of the \(k \) boxes and no box would have at least \(r \) objects.

When thinking about problems of this type, it is useful to consider how you can avoid having at least \(r \) objects in one of the boxes as you add successive objects. To avoid adding a \(r \)th object to any box, you eventually end up with \(r-1 \) objects in each box. There is no way to add the next object without putting an \(r \)th object in that box.

Examples 5–8 illustrate how the generalized pigeonhole principle is applied.

EXAMPLE 5

Among 100 people there are at least \(\lceil 100/12 \rceil = 9 \) who were born in the same month.
A standard deck of 52 cards has 13 kinds of cards, with four cards of each kind, one in each of the four suits, hearts, diamonds, spades, and clubs.

Example 6

What is the minimum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade, if there are five possible grades, A, B, C, D, and F?

Solution: The minimum number of students needed to ensure that at least six students receive the same grade is the smallest integer N such that $\left\lceil \frac{N}{5} \right\rceil = 6$. The smallest such integer is $N = 5 \cdot 5 + 1 = 26$. If you have only 25 students, it is possible for there to be five who have received each grade so that no six students have received the same grade. Thus, 26 is the minimum number of students needed to ensure that at least six students will receive the same grade.

Example 7

a) How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

b) How many must be selected to guarantee that at least three hearts are selected?

Solution:

a) Suppose there are four boxes, one for each suit, and as cards are selected they are placed in the box reserved for cards of that suit. Using the generalized pigeonhole principle, we see that if N cards are selected, there is at least one box containing at least $\left\lceil \frac{N}{4} \right\rceil$ cards. Consequently, we know that at least three cards of one suit are selected if $\left\lceil \frac{N}{4} \right\rceil \geq 3$. The smallest integer N such that $\left\lceil \frac{N}{4} \right\rceil \geq 3$ is $N = 2 \cdot 4 + 1 = 9$, so nine cards suffice. Note that if eight cards are selected, it is possible to have two cards of each suit, so more than eight cards are needed. Consequently, nine cards must be selected to guarantee that at least three cards of one suit are chosen. One good way to think about this is to note that after the eighth card is selected, there is at least one box containing at least nine cards.

b) We do not use the generalized pigeonhole principle to answer this question, because we want to make sure that there are three hearts, not just three cards of one suit. Note that in the worst case, we can select all the clubs, diamonds, and spades, 39 cards in all, before we select a single heart. The next three cards will be all hearts, so we may need to select 42 cards to get three hearts.

Example 8

What is the least number of area codes needed to guarantee that the 25 million phones in a state can be assigned distinct 10-digit telephone numbers? (Assume that telephone numbers are of the form XXX-XXXX-XXXX, where the first three digits form the area code, X represents a digit from 2 to 9 inclusive, and X represents any digit.)

Solution: There are eight million different phone numbers of the form XXX-XXXX-XXXX (as shown in Example 8 of Section 6.1). Hence, by the generalized pigeonhole principle, among 25 million telephones, at least $\left\lceil \frac{25 \cdot 10^6}{8 \cdot 10^6} \right\rceil = 4$ of them must have identical phone numbers. Hence, at least four area codes are required to ensure that all 10-digit numbers are different.

Example 9, although not an application of the generalized pigeonhole principle, makes use of similar principles.

Example 9

Suppose that a computer science laboratory has 15 workstations and 10 servers. A cable can be used to directly connect a workstation to a server. For each server, only one direct connection to that server can be active at any time. We want to guarantee that at any time any set of 10 or fewer workstations can simultaneously access different servers via direct connections. Although we could do this by connecting every workstation directly to every server (using 150 connections), what is the minimum number of direct connections needed to achieve this goal?

Solution: Suppose that we label the workstations W_1, W_2, \ldots, W_{15} and the servers S_1, S_2, \ldots, S_{10}. Furthermore, suppose that we connect W_k to S_j for $k = 1, 2, \ldots, 10$ and each of $W_{11}, W_{12}, W_{13}, W_{14}$, and W_{15} to all 10 servers. We have a total of 60 direct connections. Clearly any set of 10 or fewer workstations can simultaneously access different servers. We see this by noting that if workstation W_i is included with $1 \leq j \leq 10$, it can access server S_j, and for each workstation W_k with $k \geq 11$ included, there must be a corresponding workstation W_i.
EXAMPLE 10

During a month with 30 days, a baseball team plays at least one game a day, but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games.

Solution: Let \(a_j \) be the number of games played on or before the \(j \)th day of the month. Then \(a_1, a_2, \ldots, a_{30} \) is an increasing sequence of distinct positive integers, with \(1 \leq a_j \leq 45 \). Moreover, \(a_1 + 14, a_2 + 14, \ldots, a_{14} + 14 \) is also an increasing sequence of distinct positive integers, with \(15 \leq a_j + 14 \leq 59 \).

The 60 positive integers \(a_1, a_2, \ldots, a_{14}, a_1 + 14, a_2 + 14, \ldots, a_{14} + 14 \) are all odd positive integers less than 2

This means that exactly 14 games were played from day \(j + 1 \) to day \(i \).

EXAMPLE 11

Show that among any \(n + 1 \) positive integers not exceeding \(2n \) there must be an integer that divides one of the other integers.

Solution: Write each of the \(n + 1 \) integers \(a_1, a_2, \ldots, a_{n+1} \) as a power of 2 times an odd integer. In other words, let \(a_j = 2^k q_j \) for \(j = 1, 2, \ldots, n+1 \), where \(k_j \) is a nonnegative integer and \(q_j \) is odd. The integers \(q_1, q_2, \ldots, q_{n+1} \) are all odd positive integers less than 2

A clever application of the pigeonhole principle shows the existence of an increasing or a decreasing subsequence of a certain length in a sequence of distinct integers. We review some definitions before this application is presented. Suppose that \(a_1, a_2, \ldots, a_N \) is a sequence of real numbers. A subsequence of this sequence is a sequence of the form \(a_{i_1}, a_{i_2}, \ldots, a_{i_n} \), where \(1 \leq i_1 < i_2 < \cdots < i_n \leq N \). Hence, a subsequence is a sequence obtained from the original sequence by including some of the terms of the original sequence in their original order, and perhaps not including other terms. A sequence is called strictly increasing if each term is larger than the one that precedes it, and it is called strictly decreasing if each term is smaller than the one that precedes it.

THEOREM 3

Every sequence of \(n^2 + 1 \) distinct real numbers contains a subsequence of length \(n + 1 \) that is either strictly increasing or strictly decreasing.
EXAMPLE 12
The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10 terms. Note that 10 = 3^2 + 1. There
are four strictly increasing subsequences of length four, namely, 1, 4, 6, 12; 1, 4, 6, 7; 1, 4, 6, 10;
and 1, 4, 5, 7. There is also a strictly decreasing subsequence of length four, namely, 11, 9, 6, 5.

We give an example before presenting the proof of Theorem 3.

EXAMPLE 13
Assume that in a group of six people, each pair of individuals consists of two friends or two
enemies. Show that there are either three mutual friends or three mutual enemies in the group.

Solution: Let A be one of the six people. Of the five other people in the group, there are either
two or more who are friends of A, or three or more who are enemies of A. This follows from
the generalized pigeonhole principle, because when five objects are divided into two sets, one
of the sets has at least \([5/2] = 3\) elements. In the former case, suppose that B, C, and D are
friends of A. If any two of these three individuals are friends, then these two and A form a group
of three mutual friends. Otherwise, B, C, and D form a set of three mutual enemies. The proof
in the latter case, when there are three or more enemies of A, proceeds in a similar manner.

The Ramsey number \(R(m, n)\), where \(m\) and \(n\) are positive integers greater than or equal
to 2, denotes the minimum number of people at a party such that there are either \(m\) mutual friends
or \(n\) mutual enemies, assuming that every pair of people at the party are friends or enemies.
Example 13 shows that \(R(3, 3) \leq 6\). We conclude that \(R(3, 3) = 6\) because in a group of five
Exercises

1. Show that in any set of six classes, each meeting regularly once a week on a particular day of the week, there must be two that meet on the same day, assuming that no classes are held on weekends.

2. Show that if there are 30 students in a class, then at least two have last names that begin with the same letter.

3. A drawer contains a dozen brown socks and a dozen black socks, all unmatched. A man takes socks out at random in the dark.
 a) How many socks must he take out to be sure that he has at least three pairs of the same color?
 b) How many socks must he take out to be sure that he has at least two black socks?

4. A bowl contains 10 red balls and 10 blue balls. A woman comes from the same state?

5. Show that there are at least nine freshmen, at least nine sophomores, or at least nine juniors in the class.

6. Let \(R(n, n) \) be a function from \(S \to S \) with exactly the same remainder when they are divided by 4. Show that the midpoint of at least one pair of these points has integer coordinates.

7. Let \(f \) be a function from \(S \) to \(T \), where \(S \) and \(T \) are finite sets with \(|S| > |T| \), then there are elements \(x_1 \) and \(x_2 \) in \(S \) such that \(f(x_1) = f(x_2) \), or in other words, \(f \) is not one-to-one.

8. What is the minimum number of students, each of whom comes from one of the 50 states, who must be enrolled in a university to guarantee that there are at least 100 who come from the same state?

9. Let \((x_i, y_i, z_i)\) for \(i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \) be a set of nine distinct points with integer coordinates in \(xyz \) space. Show that the midpoint of the line joining at least one pair of these points has integer coordinates.

10. Let \((x_i, y_i)\) for \(i = 1, 2, 3, 4, 5, 6, 7, 8, 9 \) be a set of five distinct points with integer coordinates in the \(xy \) plane. Show that the midpoint of the line joining at least one pair of these points has integer coordinates.

11. Let \((x_i, y_i, z_i)\) for \(i = 1, 2, 3, 4, 5 \) be a set of five distinct points with integer coordinates in \(xyz \) space. Show that the midpoint of the line joining at least one pair of these points has integer coordinates.

12. Show that if seven integers are selected from the first 10 positive integers, there must be at least two pairs of these integers with the sum 11.

13. Is the conclusion in part (a) true if six integers are selected rather than seven?

14. a) Show that if seven integers are selected from the first 10 positive integers, there must be at least two pairs of these integers with the sum 11.
 b) Is the conclusion in part (a) true if six integers are selected rather than seven?

15. How many numbers must be selected from the set \([1, 2, 3, 4, 5, 6]\) to guarantee that at least one pair of these numbers add up to 7?

16. How many numbers must be selected from the set \([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\) to guarantee that at least one pair of these numbers add up to 11?

17. A company stores products in a warehouse. Storage bins in this warehouse are specified by their aisle, location in the aisle, and shelf. There are 50 aisles, 85 horizontal locations in each aisle, and 5 shelves throughout the warehouse. What is the least number of products the company can have so that at least two products must be stored in the same bin?

18. Suppose that there are nine students in a discrete mathematics class at a small college.
 a) Show that the class must have at least five male students or at least five female students.
 b) Show that the class must have at least three male students or at least seven female students.

19. Suppose that every student in a discrete mathematics class of 25 students is a freshman, a sophomore, or a junior.
 a) Show that there are at least nine freshmen, at least nine sophomores, or at least nine juniors in the class.

20. A woman a) Show that the class must have at least five male students or at least five female students.
 b) Show that the class must have at least three male students or at least seven female students.
b) Show that there are either at least three freshmen, at least 19 sophomores, or at least five juniors in the class.
20. Find an increasing subsequence of maximal length and a decreasing subsequence of maximal length in the sequence 22, 5, 7, 2, 3, 10, 15, 21, 3, 17.
21. Construct a sequence of 16 positive integers that has no increasing or decreasing subsequence of five terms.
22. Show that if there are 101 people of different heights standing in a line, it is possible to find 11 people in the order they are standing in the line with heights that are either increasing or decreasing.
23. Show that whenever 25 girls and 25 boys are seated around a circular table there is always a person both of whose neighbors are boys.
24. Suppose that 21 girls and 21 boys enter a mathematics competition. Furthermore, suppose that each entrant solves at most six questions, and for every boy-girl pair, there is at least one question that they both solved. Show that there is a question that was solved by at least three girls and at least three boys.
25. Describe an algorithm in pseudocode for producing the largest increasing or decreasing subsequence of a sequence of distinct integers.
26. Show that in a group of five people (where any two people are either friends or enemies), there are not necessarily three mutual friends or three mutual enemies.
27. Show that in a group of 10 people (where any two people are either friends or enemies), there are either three mutual friends or four mutual enemies, and there are either three mutual enemies or four mutual friends.
28. Use Exercise 27 to show that among any group of 20 people (where any two people are either friends or enemies), there are either four mutual friends or four mutual enemies.
29. Show that if \(n \) is an integer with \(n \geq 2 \), then the Ramsey number \(R(2, n) \) equals \(n \). (Recall that Ramsey numbers were discussed after Example 13 in Section 6.2.)
30. Show that if \(m \) and \(n \) are integers with \(m \geq 2 \) and \(n \geq 2 \), then the Ramsey numbers \(R(m, n) \) and \(R(n, m) \) are equal. (Recall that Ramsey numbers were discussed after Example 13 in Section 6.2.)
31. Show that there are at least six people in California (population: 37 million) with the same three initials who were born on the same day of the year (but not necessarily in the same year). Assume that everyone has three initials.
32. Show that if there are 100,000,000 wage earners in the United States who earn less than 1,000,000 dollars (but at least a penny), then there are two who earned exactly the same amount of money, to the penny, last year.
33. In the 17th century, there were more than 800,000 inhabitants of Paris. At the time, it was believed that no one had more than 200,000 hairs on their head. Assuming these numbers are correct and that everyone has at least one hair on their head (that is, no one is completely bald), use the pigeonhole principle to show, as the French writer Pierre Nicole did, that there had to be two Parisians with the same number of hairs on their heads. Then use the generalized pigeonhole principle to show that there had to be at least five Parisians at that time with the same number of hairs on their heads.
34. Assuming that no one has more than 1,000,000 hairs on the head of any person and that the population of New York City was 8,000,278 in 2010, show there had to be at least nine people in New York City in 2010 with the same number of hairs on their heads.
35. There are 38 different time periods during which classes at a university can be scheduled. If there are 677 different classes, how many different rooms will be needed?
36. A computer network consists of six computers. Each computer is directly connected to at least one of the other computers. Show that there are at least two computers in the network that are directly connected to the same number of other computers.
37. A computer network consists of six computers. Each computer is directly connected to zero or more of the other computers. Show that there are at least two computers in the network that are directly connected to the same number of other computers. (Hint: It is impossible to have a computer linked to none of the others and a computer linked to all the others.)
38. Find the least number of cables required to connect eight computers to four printers to guarantee that for every choice of four of the eight computers, these four computers can directly access four different printers. Justify your answer.
39. Find the least number of cables required to connect 100 computers to 20 printers to guarantee that 2every subset of 20 computers can directly access 20 different printers. (Here, the assumptions about cables and computers are the same as in Example 9.) Justify your answer.
40. Prove that at a party where there are at least two people, there are two people who know the same number of other people there.
41. An arm wrestler is the champion for a period of 75 hours. (Here, by an hour, we mean a period starting from an exact hour, such as 1 p.m., until the next hour.) The arm wrestler had at least one match an hour, but no more than 125 total matches. Show that there is a period of consecutive hours during which the arm wrestler had exactly 24 matches.
42. Is the statement in Exercise 41 true if 24 is replaced by a) 27? b) 23? c) 25? d) 30?
43. Show that if \(f \) is a function from \(S \) to \(T \), where \(S \) and \(T \) are nonempty finite sets and \(m = |S|/|T| \), then there are at least \(m \) elements of \(S \) mapped to the same value of \(T \). That is, show that there are distinct elements \(s_1, s_2, \ldots, s_m \) of \(S \) such that \(f(s_1) = f(s_2) = \cdots = f(s_m) \).
44. There are 51 houses on a street. Each house has an address between 1000 and 1099, inclusive. Show that at least two houses have addresses that are consecutive integers.
45. Let \(x \) be an irrational number. Show that for some positive integer \(j \) not exceeding the positive integer \(n \), the absolute value of the difference between \(jx \) and the nearest integer to \(jx \) is less than \(1/n \).

46. Let \(n_1, n_2, \ldots, n_t \) be positive integers. Show that if \(n_1 + n_2 + \cdots + n_t = t + 1 \) objects are placed into \(t \) boxes, then for some \(i, i = 1, 2, \ldots, t \), the \(i \)th box contains at least \(n_i \) objects.

47. An alternative proof of Theorem 3 based on the generalized pigeonhole principle is outlined in this exercise. The notation used is the same as that used in the proof in the text.

a) Assume that \(i_k \leq n \) for \(k = 1, 2, \ldots, n^2 + 1 \). Use the generalized pigeonhole principle to show that there are \(n + 1 \) terms \(a_{i_1}, a_{i_2}, \ldots, a_{i_{n+1}} \) with \(i_1 = i_2 = \cdots = i_{n+1} \), where \(1 \leq k_1 < k_2 < \cdots < k_{n+1} \).

b) Show that \(a_{ik} > a_{ik+1} \) for \(j = 1, 2, \ldots, n \). (Hint: Assume that \(a_{ik} < a_{ik+1} \), and show that this implies that \(i_k > i_{k+1} \), which is a contradiction.)

c) Use parts (a) and (b) to show that if there is no increasing subsequence of length \(n + 1 \), then there must be a decreasing subsequence of this length.

6.3 Permutations and Combinations

Introduction

Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these elements matters. Many other counting problems can be solved by finding the number of ways to select a particular number of elements from a set of a particular size, where the order of the elements selected does not matter. For example, in how many ways can we select three students from a group of five students to stand in line for a picture? How many different committees of three students can be formed from a group of four students? In this section we will develop methods to answer questions such as these.

Permutations

We begin by solving the first question posed in the introduction to this section, as well as related questions.

Example 1

In how many ways can we select three students from a group of five students to stand in line for a picture? In how many ways can we arrange all five of these students in a line for a picture?

Solution: First, note that the order in which we select the students matters. There are five ways to select the first student to stand at the start of the line. Once this student has been selected, there are four ways to select the second student in the line. After the first and second students have been selected, there are three ways to select the third student in the line. By the product rule, there are \(5 \cdot 4 \cdot 3 = 60 \) ways to select three students from a group of five students to stand in line for a picture.

To arrange all five students in a line for a picture, we select the first student in five ways, the second in four ways, the third in three ways, the fourth in two ways, and the fifth in one way. Consequently, there are \(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 \) ways to arrange all five students in a line for a picture.

Example 1 illustrates how ordered arrangements of distinct objects can be counted. This leads to some terminology.

A **permutation** of a set of distinct objects is an ordered arrangement of these objects. We also are interested in ordered arrangements of some of the elements of a set. An ordered arrangement of \(r \) elements of a set is called an **\(r \)-permutation**.
EXAMPLE 2 Let \(S = \{1, 2, 3\}\). The ordered arrangement 3, 1, 2 is a permutation of \(S\). The ordered arrangement 3, 2 is a 2-permutation of \(S\).

The number of \(r\)-permutations of a set with \(n\) elements is denoted by \(P(n, r)\). We can find \(P(n, r)\) using the product rule.

EXAMPLE 3 Let \(S = \{a, b, c\}\). The 2-permutations of \(S\) are the ordered arrangements \(a, b\); \(a, c\); \(b, a\); \(b, c\); \(c, a\); and \(c, b\). Consequently, there are six 2-permutations of this set with three elements. There are always six 2-permutations of a set with three elements. There are three ways to choose the first element of the arrangement. There are two ways to choose the second element of the arrangement, because it must be different from the first element. Hence, by the product rule, we see that \(P(3, 2) = 3 \cdot 2 = 6\).

We now use the product rule to find a formula for \(P(n, r)\) whenever \(n\) and \(r\) are positive integers with \(1 \leq r \leq n\).

THEOREM 1 If \(n\) is a positive integer and \(r\) is an integer with \(1 \leq r \leq n\), then there are \(P(n, r) = n(n-1)(n-2) \cdots (n-r+1)\) \(r\)-permutations of a set with \(n\) distinct elements.

Proof: We will use the product rule to prove that this formula is correct. The first element of the permutation can be chosen in \(n\) ways because there are \(n\) elements in the set. There are \(n-1\) ways to choose the second element of the permutation, because there are \(n-1\) elements left in the set after using the element picked for the first position. Similarly, there are \(n-r+1\) ways to choose the \(r\)th element. Consequently, by the product rule, there are \(n(n-1)(n-2) \cdots (n-r+1)\) \(r\)-permutations of the set.

Note that \(P(n, 0) = 1\) whenever \(n\) is a nonnegative integer because there is exactly one way to order zero elements. That is, there is exactly one list with no elements in it, namely the empty list.

We now state a useful corollary of Theorem 1.

COROLLARY 1 If \(n\) and \(r\) are integers with \(0 \leq r \leq n\), then \(P(n, r) = \frac{n!}{(n-r)!}\).

Proof: When \(n\) and \(r\) are integers with \(1 \leq r \leq n\), by Theorem 1 we have
\[
P(n, r) = n(n-1)(n-2) \cdots (n-r+1) = \frac{n!}{(n-r)!}
\]
Because \(\frac{n!}{(n-0)!} = \frac{n!}{n!} = 1\) whenever \(n\) is a nonnegative integer, we see that the formula \(P(n, r) = \frac{n!}{(n-r)!}\) also holds when \(r = 0\).
By Theorem 1 we know that if \(n \) is a positive integer, then \(P(n, n) = n! \). We will illustrate this result with some examples.

EXAMPLE 4

How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solution: Because it matters which person wins which prize, the number of ways to pick the three prize winners is the number of ordered selections of three elements from a set of 100 elements, that is, the number of 3-permutations of a set of 100 elements. Consequently, the answer is

\[
P(100, 3) = 100 \cdot 99 \cdot 98 = 970,200.
\]

EXAMPLE 5

Suppose that there are eight runners in a race. The winner receives a gold medal, the second-place finisher receives a silver medal, and the third-place finisher receives a bronze medal. How many different ways are there to award these medals, if all possible outcomes of the race can occur and there are no ties?

Solution: The number of different ways to award the medals is the number of 3-permutations of a set with eight elements. Hence, there are \(P(8, 3) = 8 \cdot 7 \cdot 6 = 336 \) possible ways to award the medals.

EXAMPLE 6

Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Solution: The number of possible paths between the cities is the number of permutations of seven elements, because the first city is determined, but the remaining seven can be ordered arbitrarily. Consequently, there are \(7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040 \) ways for the saleswoman to choose her tour. If, for instance, the saleswoman wishes to find the path between the cities with minimum distance, and she computes the total distance for each possible path, she must consider a total of 5040 paths!

EXAMPLE 7

How many permutations of the letters \(ABCDEF \) contain the string \(ABC \)?

Solution: Because the letters \(ABC \) must occur as a block, we can find the answer by finding the number of permutations of six objects, namely, the block \(ABC \) and the individual letters \(D, E, F, G, \) and \(H \). Because these six objects can occur in any order, there are \(6! = 720 \) permutations of the letters \(ABCDEFGH \) in which \(ABC \) occurs as a block.

Combinations

We now turn our attention to counting unordered selections of objects. We begin by solving a question posed in the introduction to this section of the chapter.

EXAMPLE 8

How many different committees of three students can be formed from a group of four students?

Solution: To answer this question, we need only find the number of subsets with three elements from the set containing the four students. We see that there are four such subsets, one for each of the four students, because choosing three students is the same as choosing one of the four students to leave out of the group. This means that there are four ways to choose the three students for the committee, where the order in which these students are chosen does not matter.
Example 8 illustrates that many counting problems can be solved by finding the number of subsets of a particular size of a set with \(n \) elements, where \(n \) is a positive integer. Thus, an \(r \)-combination is simply a subset of the set with \(r \) elements.

EXAMPLE 9

Let \(S \) be the set \([1, 2, 3, 4]\). Then \([1, 3, 4]\) is a 3-combination from \(S \). (Note that \([4, 1, 3]\) is the same 3-combination as \([1, 3, 4]\), because the order in which the elements of a set are listed does not matter.)

The number of \(r \)-combinations of a set with \(n \) distinct elements is denoted by \(C(n, r) \). Note that \(C(n, r) \) is also denoted by \(\binom{n}{r} \) and is called a binomial coefficient. We will learn where this terminology comes from in Section 6.4.

EXAMPLE 10

We see that \(C(4, 2) = 6 \), because the 2-combinations of \([a, b, c, d]\) are the six subsets \([a, b]\), \([a, c]\), \([a, d]\), \([b, c]\), \([b, d]\), and \([c, d]\).

We can also use the division rule for counting to construct a proof of this theorem. Because the order of elements in a combination does not matter and there are \(P(r, r) \) ways to order \(r \) elements in an \(r \)-combination of \(n \) elements, each of the \(C(n, r) \) \(r \)-combinations of a set with \(n \) elements corresponds to exactly \(P(r, r) \) \(r \)-permutations. Hence, by the division rule, \(C(n, r) = \frac{P(n, r)}{P(r, r)} \), which implies as before that \(C(n, r) = \frac{n!}{r!(n-r)!} \).

The formula in Theorem 2, although explicit, is not helpful when \(C(n, r) \) is computed for large values of \(n \) and \(r \). The reasons are that it is practical to compute exact values of factorials exactly only for small integer values, and when floating point arithmetic is used, the formula in Theorem 2 may produce a value that is not an integer. When computing \(C(n, r) \), first note that when we cancel out \((n-r)!\) from the numerator and denominator of the expression for \(C(n, r) \) in Theorem 2, we obtain

\[
C(n, r) = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\cdots(n-r+1)}{r!}.
\]
6.3 Permutations and Combinations

Consequently, to compute \(C(n, r) \) you can cancel out all the terms in the larger factorial in the denominator from the numerator and denominator, then multiply all the terms that do not cancel in the numerator and finally divide by the smaller factorial in the denominator. [When doing this calculation by hand, instead of by machine, it is also worthwhile to factor out common factors in the numerator \(n(n - 1) \cdots (n - r + 1) \) and in the denominator \(r! \).] Note that many calculators have a built-in function for \(C(n, r) \) that can be used for relatively small values of \(n \) and \(r \) and many computational programs can be used to find \(C(n, r) \). [Such functions may be called \(\text{choose}(n, k) \) or \(\text{binom}(n, k) \).]

Example 11 illustrates how \(C(n, k) \) is computed when \(k \) is relatively small compared to \(n \) and when \(k \) is close to \(n \). It also illustrates a key identity enjoyed by the numbers \(C(n, k) \).

Example 11

How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a standard deck of 52 cards?

Solution: Because the order in which the five cards are dealt from a deck of 52 cards does not matter, there are

\[
C(52, 5) = \frac{52!}{5!47!}
\]

different hands of five cards that can be dealt. To compute the value of \(C(52, 5) \), first divide the numerator and denominator by \(47! \) to obtain

\[
C(52, 5) = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}.
\]

This expression can be simplified by first dividing the factor 5 in the denominator into the factor 50 in the numerator to obtain a factor 10 in the numerator, then dividing the factor 4 in the denominator into the factor 48 in the numerator to obtain a factor of 12 in the numerator, then dividing the factor 3 in the denominator into the factor 51 in the numerator to obtain a factor of 17 in the numerator, and finally, dividing the factor 2 in the denominator into the factor 52 in the numerator to obtain a factor of 26 in the numerator. We find that

\[
C(52, 5) = 26 \cdot 17 \cdot 10 \cdot 9 \cdot 12 = 2,598,960.
\]

Consequently, there are 2,598,960 different poker hands of five cards that can be dealt from a standard deck of 52 cards.

Note that there are

\[
C(52, 47) = \frac{52!}{47!5!}
\]

different ways to select 47 cards from a standard deck of 52 cards. We do not need to compute this value because \(C(52, 47) = C(52, 5) \). (Only the order of the factors 5! and 47! is different in the denominators in the formulae for these quantities.) It follows that there are also 2,598,960 different ways to select 47 cards from a standard deck of 52 cards.

In Example 11 we observed that \(C(52, 5) = C(52, 47) \). This is a special case of the useful identity for the number of \(r \)-combinations of a set given in Corollary 2.

Corollary 2

Let \(n \) and \(r \) be nonnegative integers with \(r \leq n \). Then \(C(n, r) = C(n, n - r) \).

Proof: From Theorem 2 it follows that

\[
C(n, r) = \frac{n!}{r!(n - r)!}
\]
and
\[
C(n, n-r) = \frac{n!}{(n-r)![(n-(n-r))!]} = \frac{n!}{(n-r)!r!}
\]
Hence, \(C(n, r) = C(n, n-r)\).

We can also prove Corollary 2 without relying on algebraic manipulation. Instead, we can use a combinatorial proof. We describe this important type of proof in Definition 1.

Definition 1

A combinatorial proof of an identity is a proof that uses counting arguments to prove that both sides of the identity count the same objects but in different ways or a proof that is based on showing that there is a bijection between the sets of objects counted by the two sides of the identity. These two types of proofs are called double counting proofs and bijective proofs, respectively.

Many identities involving binomial coefficients can be proved using combinatorial proofs. We now show how to prove Corollary 2 using a combinatorial proof. We will provide both a double counting proof and a bijective proof, both based on the same basic idea.

Example 12

How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school?

Solution: The answer is given by the number of 5-combinations of a set with 10 elements. By Theorem 2, the number of such combinations is
\[
C(10, 5) = \frac{10!}{5!5!} = 252.
\]

Example 13

A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission (assuming that all crew members have the same job)?

Solution: The number of ways to select a crew of six from the pool of 30 people is the number of 6-combinations of a set with 30 elements, because the order in which these people are chosen does not matter. By Theorem 2, the number of such combinations is
\[
C(30, 6) = \frac{30!}{6!24!} = \frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 593,775.
\]
6.3 Permutations and Combinations

EXAMPLE 14

How many bit strings of length n contain exactly r 1s?

Solution: The positions of r 1s in a bit string of length n form an r-combination of the set $\{1, 2, 3, \ldots, n\}$. Hence, there are $C(n, r)$ bit strings of length n that contain exactly r 1s.

EXAMPLE 15

Suppose that there are 9 faculty members in the mathematics department and 11 in the computer science department. How many ways are there to select a committee to develop a discrete mathematics course at a school if the committee is to consist of three faculty members from the mathematics department and four from the computer science department?

Solution: By the product rule, the answer is the product of the number of 3-combinations of a set with nine elements and the number of 4-combinations of a set with 11 elements. By Theorem 2, the number of ways to select the committee is

$$C(9, 3) \cdot C(11, 4) = \frac{9!}{3!} \cdot \frac{11!}{4!} = 84 \cdot 330 = 27,720.$$

Exercises

1. List all the permutations of \{a, b, c\}.
2. How many different permutations are there of the set \{a, b, c, d, e, f, g\}?
3. How many permutations of \{a, b, c, d, e, f, g\} end with a?
4. Let $S = \{1, 2, 3, 4, 5\}$
 a) List all the 3-permutations of S.
 b) List all the 3-combinations of S.
5. Find the value of each of these quantities.
 a) $P(6, 3)$
 b) $P(6, 5)$
 c) $P(8, 3)$
 d) $P(8, 5)$
 e) $P(8, 8)$
 f) $P(10, 9)$
6. Find the value of each of these quantities.
 a) $C(5, 1)$
 b) $C(5, 3)$
 c) $C(8, 4)$
 d) $C(8, 8)$
 e) $C(8, 0)$
 f) $C(12, 6)$
7. Find the number of 5-permutations of a set with nine elements.
8. In how many different orders can five runners finish a race if no ties are allowed?
9. How many possibilities are there for the win, place, and show (first, second, and third) positions in a horse race with 12 horses if all orders of finish are possible?
10. There are six different candidates for governor of a state.
 In how many different orders can the names of the candidates be printed on a ballot?
11. How many bit strings of length 10 contain
 a) exactly four 1s?
 b) at most four 1s?
 c) at least one 1?
 d) an equal number of 0s and 1s?
12. How many bit strings of length 12 contain
 a) exactly three 1s?
 b) at most three 1s?
 c) at least three 1s?
 d) an equal number of 0s and 1s?
13. A group contains n men and n women. How many ways are there to arrange these people in a row if the men and women alternate?
14. In how many ways can a set of two positive integers less than 100 be chosen?
15. In how many ways can a set of five letters be selected from the English alphabet?
16. How many subsets with an odd number of elements does a set with 10 elements have?
17. How many subsets with more than two elements does a set with 100 elements have?
18. A coin is flipped eight times where each flip comes up either heads or tails. How many possible outcomes are there in total?
 a) contain exactly three heads?
 b) contain at least three heads?
 c) contain at least three tails?
 d) contain the same number of heads and tails?
19. A coin is flipped 10 times where each flip comes up either heads or tails. How many possible outcomes are there in total?
 a) contain exactly two heads?
 b) contain at most three tails?
 c) contain the same number of heads and tails?
20. How many bit strings of length 10 have
 a) exactly three 0s?
 b) more 0s than 1s?
 c) at least seven 1s?
 d) at least three 1s?
21. How many permutations of the letters ABCDEFG contain
 a) the string BCD?
 b) the string CFG?
 c) the strings BA and GF?
 d) the strings ABC and DE?
 e) the strings ABC and CDE?
 f) the strings CBA and RED?

22. How many permutations of the letters ABCDEFGH contain
 a) the string ED?
 b) the string CDE?
 c) the strings BA and FGH?
 d) the strings AB, DE, and GH?
 e) the strings CAB and BDE?
 f) the strings BCA and ABE?

23. How many ways are there for 10 women and six men
 to stand in a line so that no two women stand next to each
 other? [Hint: First position the men and then consider
 possible positions for the women.]

24. How many ways are there for 10 women and six men
 to stand in a line so that no two men stand next to each
 other? [Hint: First position the women and then consider
 possible positions for the men.]

25. One hundred tickets, numbered 1, 2, 3, …, 100, are sold
to 100 different people for a drawing. Four different prizes
are awarded, including a grand prize (a trip to Tahiti). How
many ways are there to award the prizes if
a) there are no restrictions?
 b) the person holding ticket 47 wins the grand prize?
 c) the person holding ticket 47 wins one of the prizes?
 d) the person holding ticket 47 does not win a prize?
 e) the people holding tickets 19 and 47 both win prizes?
 f) the people holding tickets 19, 47, and 73 all win
 prizes?
 g) the people holding tickets 19, 47, 73, and 97 all win
 prizes?
 h) none of the people holding tickets 19, 47, 73, and 97
 wins a prize?
 i) the grand prize winner is a person holding ticket 19,
 47, 73, or 97?
 j) the people holding tickets 19 and 47 win prizes, but
 the people holding tickets 73 and 97 do not win prizes?

26. Thirteen people on a softball team show up for a game.
 a) How many ways are there to choose 10 players to take
 the field?
 b) How many ways are there to assign the 10 positions
 by selecting players from the 13 people who show up?
 c) Of the 13 people who show up, three are women. How
 many ways are there to choose 10 players to take the
 field if at least one of these players must be a woman?

27. A club has 25 members.
 a) How many ways are there to choose four members of
 the club to serve on an executive committee?
 b) How many ways are there to choose a president, vice
 president, secretary, and treasurer of the club, where
 no person can hold more than one office?

28. A professor writes 40 discrete mathematics true/false
 questions. Of the statements in these questions, 17 are
 true. If the questions can be positioned in any order, how
 many different answer keys are possible?

29. How many 4-permutations of the positive integers not ex-
 ceeding 100 contain three consecutive integers k, k + 1,
 k + 2, in the correct order
 a) where these consecutive integers can perhaps be sepa-
 rated by other integers in the permutation?
 b) where they are in consecutive positions in the permu-
 tation?

30. Seven women and nine men are on the faculty in the
 mathematics department at a school.
 a) How many ways are there to select a committee of
 five members of the department if at least one woman
 must be on the committee?
 b) How many ways are there to select a committee of
 five members of the department if at least one woman
 and at least one man must be on the committee?

31. The English alphabet contains 21 consonants and five
 vowels. How many strings of six lowercase letters of the
 English alphabet contain
 a) exactly one vowel?
 b) exactly two vowels?
 c) at least one vowel?
 d) at least two vowels?

32. How many strings of six lowercase letters from the En-
 glish alphabet contain
 a) the letter a?
 b) the letters a and b?
 c) the letters a and b in consecutive positions with a
 preceding b, with all the letters distinct?
 d) the letters a and b, where a is somewhere to the left
 of b in the string, with all the letters distinct?

33. Suppose that a department contains 10 men and 15
 women. How many ways are there to form a commit-
 tee with six members if it must have the same number
 of men and women?

34. Suppose that a department contains 10 men and 15
 women. How many ways are there to form a commit-
 tee with six members if it must have more women than
 men?

35. How many bit strings contain exactly eight 0s and 10 1s
 if every 0 must be immediately followed by a 1?

36. How many bit strings contain exactly five 0s and 14 1s if
 every 0 must be immediately followed by two 1s?

37. How many bit strings of length 10 contain at least three
 1s and at least three 0s?

38. How many ways are there to select 12 countries in the
 United Nations to serve on a council if 3 are selected
 from a block of 45, 4 are selected from a block of 57, and
 the others are selected from the remaining 69 countries?
39. How many license plates consisting of three letters followed by three digits contain no letter or digit twice?

A circular \(r \)-permutation of \(n \) people is a seating of \(r \) of these \(n \) people around a circular table, where seatings are considered to be the same if they can be obtained from each other by rotating the table.

40. Find the number of circular 3-permutations of 5 people.

41. Find a formula for the number of circular \(r \)-permutations of \(n \) people.

42. Find a formula for the number of ways to seat \(r \) of \(n \) people around a circular table, where seatings are considered the same if every person has the same two neighbors without regard to which side these neighbors are sitting on.

43. How many ways are there for a horse race with three horses to finish if ties are possible? (Note: Two or three horses may tie.)

*44. How many ways are there for a horse race with four horses to finish if ties are possible? (Note: Any number of the four horses may tie.)

*45. There are six runners in the 100-yard dash. How many ways are there for three medals to be awarded if ties are possible? (The runner or runners who finish with exactly one runner ahead receive silver medals, and the runner or runners who finish with exactly two runners ahead receive bronze medals.)

*46. This procedure is used to break ties in games in the championship round of the World Cup soccer tournament. Each team selects five players in a prescribed order. Each of these players takes a penalty kick, with a player from the first team followed by a player from the second team and so on, following the order of players specified. If the score is still tied at the end of the 10 penalty kicks, this procedure is repeated. If the score is still tied after 20 penalty kicks, a sudden-death shootout occurs, with the first team scoring an unanswered goal victorious.

a) How many different scoring scenarios are possible if the game is settled in the first round of 10 penalty kicks, where the round ends once it is impossible for a team to equal the number of goals scored by the other team?

b) How many different scoring scenarios for the first and second groups of penalty kicks are possible if the game is settled in the second round of 10 penalty kicks?

c) How many scoring scenarios are possible for the full set of penalty kicks if the game is settled with no more than 10 total additional kicks after the two rounds of five kicks for each team?

6.4 Binomial Coefficients and Identities

As we remarked in Section 6.3, the number of \(\binom{n}{r} \) from a set with \(n \) elements is often denoted by \(\binom{n}{r} \). This number is also called a binomial coefficient because these numbers occur as coefficients in the expansion of powers of binomial expressions such as \((a + b)^n \). We will discuss the binomial theorem, which gives a power of a binomial expression as a sum of terms involving binomial coefficients. We will prove this theorem using a combinatorial proof. We will also show how combinatorial proofs can be used to establish some of the many different identities that express relationships among binomial coefficients.

The Binomial Theorem

The binomial theorem gives the coefficients of the expansion of powers of binomial expressions. A binomial expression is simply the sum of two terms, such as \(x + y \). (The terms can be products of constants and variables, but that does not concern us here.)

Example 1 illustrates how the coefficients in a typical expansion can be found and proves us for the statement of the binomial theorem.

EXAMPLE 1

The expansion of \((x + y)^3 \) can be found using combinatorial reasoning instead of multiplying the three terms out. When \((x + y)^3 = (x + y)(x + y)(x + y) \) is expanded, all products of a term in the first sum, a term in the second sum, and a term in the third sum are added. Terms of the form \(x^3 \), \(x^2y \), \(xy^2 \), and \(y^3 \) arise. To obtain a term of the form \(x^3 \), an \(x \) must be chosen in each of the sums, and this can be done in only one way. Thus, the \(x^3 \) term in the product has a coefficient of 1. To obtain a term of the form \(x^2y \), an \(x \) must be chosen in two of the three sums (and consequently a \(y \) in the other sum). Hence, the number of such terms is the number of 2-combinations of three objects, namely, \(\binom{3}{2} \). Similarly, the number of terms of the form \(xy^2 \) is the number of ways to pick one of the three sums to obtain an \(x \) (and consequently take a \(y \)
from each of the other two sums). This can be done in \(\binom{3}{1} \) ways. Finally, the only way to obtain a \(y^3 \) term is to choose the \(y \) for each of the three sums in the product, and this can be done in exactly one way. Consequently, it follows that

\[
(x + y)^3 = (x + y)(x + y)(x + y) = (xx + xy + yx + yy)(x + y)
= x^3 + 3x^2y + 3xy^2 + y^3.
\]

We now state the binomial theorem.

THEOREM 1 **THE BINOMIAL THEOREM**

Let \(x \) and \(y \) be variables, and let \(n \) be a nonnegative integer. Then

\[
(x + y)^n = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \cdots + \binom{n}{n-1} xy^{n-1} + \binom{n}{n} y^n.
\]

Proof: We use a combinatorial proof. The terms in the product when it is expanded are of the form \(x^{n-j} y^j \) for \(j = 0, 1, 2, \ldots, n \). To count the number of terms of the form \(x^{n-j} y^j \), note that to obtain such a term it is necessary to choose \(n-j \) \(x \)s from the \(n \) sums (so that the other \(j \) terms in the product are \(y \)s). Therefore, the coefficient of \(x^{n-j} y^j \) is \(\binom{n}{j} \), which is equal to \(\binom{n}{n-j} \). This proves the theorem. □

Some computational uses of the binomial theorem are illustrated in Examples 2–4.

EXAMPLE 2 What is the expansion of \((x + y)^4 \)?

Solution: From the binomial theorem it follows that

\[
(x + y)^4 = \sum_{j=0}^{4} \binom{4}{j} x^{4-j} y^j
= \binom{4}{0} x^4 + \binom{4}{1} x^3 y + \binom{4}{2} x^2 y^2 + \binom{4}{3} xy^3 + \binom{4}{4} y^4
= x^4 + 4x^3 y + 6x^2 y^2 + 4xy^3 + y^4.
\]

EXAMPLE 3 What is the coefficient of \(x^{12} y^{13} \) in the expansion of \((x + y)^{25} \)?

Solution: From the binomial theorem it follows that this coefficient is

\[
\binom{25}{13} = \frac{25!}{13! \cdot 12!} = 5,200,300.
\]

EXAMPLE 4 What is the coefficient of \(x^{12} y^{13} \) in the expansion of \((2x - 3y)^{25} \)?

Solution: First, note that this expression equals \((2x + (-3y))^{25} \). By the binomial theorem, we have

\[
(2x + (-3y))^{25} = \sum_{j=0}^{25} \binom{25}{j} (2x)^{25-j} (-3y)^j.
\]
Consequently, the coefficient of $x^{12}y^{13}$ in the expansion is obtained when $j = 13$, namely,
\[
\binom{25}{13}x^{12}(-3)^{13} = -\frac{25!}{13!12!}x^{12}y^{13}.
\]

We can prove some useful identities using the binomial theorem, as Corollaries 1, 2, and 3 demonstrate.

COROLLARY 1

Let n be a nonnegative integer. Then

\[
\sum_{k=0}^{n} \binom{n}{k} = 2^n.
\]

Proof: Using the binomial theorem with $x = 1$ and $y = 1$, we see that

\[
2^n = (1 + 1)^n = \sum_{k=0}^{n} \binom{n}{k} 1^k 1^{n-k} = \sum_{k=0}^{n} \binom{n}{k}.
\]

This is the desired result.

There is also a nice combinatorial proof of Corollary 1, which we now present.

Proof: A set with n elements has a total of 2^n different subsets. Each subset has zero elements, one element, two elements, . . . , or n elements in it. There are $\binom{n}{0}$ subsets with zero elements, $\binom{n}{1}$ subsets with one element, $\binom{n}{2}$ subsets with two elements, . . . , and $\binom{n}{n}$ subsets with n elements. Therefore,

\[
\sum_{k=0}^{n} \binom{n}{k}
\]

counts the total number of subsets of a set with n elements. By equating the two formulas we have for the number of subsets of a set with n elements, we see that

\[
\sum_{k=0}^{n} \binom{n}{k} = 2^n.
\]

COROLLARY 2

Let n be a positive integer. Then

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.
\]

Proof: When we use the binomial theorem with $x = -1$ and $y = 1$, we see that

\[
0 = 0^n = ((-1) + 1)^n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} (-1)^k.
\]

This proves the corollary.
Remark: Corollary 2 implies that
\[
\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots.
\]

COROLLARY 3
Let \(n \) be a nonnegative integer. Then
\[
\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n.
\]

Proof: We recognize that the left-hand side of this formula is the expansion of \((1 + 2)^n\) provided by the binomial theorem. Therefore, by the binomial theorem, we see that
\[
(1 + 2)^n = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 2^k = \sum_{k=0}^{n} \binom{n}{k} 2^k.
\]

Hence
\[
\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n.
\]

Pascal’s Identity and Triangle

The binomial coefficients satisfy many different identities. We introduce one of the most important of these now.

THEOREM 2

PASCAL’S IDENTITY Let \(n \) and \(k \) be positive integers with \(n \geq k \). Then
\[
\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.
\]

Proof: We will use a combinatorial proof. Suppose that \(T \) is a set containing \(n + 1 \) elements. Let \(a \) be an element in \(T \), and let \(S = T - \{a\} \). Note that there are \(\binom{n}{k} \) subsets of \(T \) containing \(k \) elements. However, a subset of \(T \) with \(k \) elements either contains \(a \) together with \(k - 1 \) elements of \(S \), or contains \(k \) elements of \(S \) and does not contain \(a \). Because there are \(\binom{n}{k-1} \) subsets of \(k - 1 \) elements of \(S \), there are \(\binom{n}{k} \) subsets of \(k \) elements of \(T \) that contain \(a \). And there are \(\binom{n}{k} \) subsets of \(k \) elements of \(T \) that do not contain \(a \), because there are \(\binom{n}{k} \) subsets of \(k \) elements of \(S \). Consequently,
\[
\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.
\]

Remark: It is also possible to prove this identity by algebraic manipulation from the formula for \(\binom{n}{k} \) (see Exercise 19).
6.4 Binomial Coefficients and Identities

The binomial coefficients can be expressed in Pascal's identity:

\[
\binom{n}{k} = \binom{n}{k-1} + \binom{n}{k-2}
\]

By Pascal’s identity:

\[
\binom{n}{k} = \binom{n}{k-1} + \binom{n}{k-2}
\]

The **Remark**: Pascal’s identity, together with the initial conditions \(\binom{n}{0} = \binom{n}{n} = 1 \) for all integers \(n \), can be used to recursively define binomial coefficients. This recursive definition is useful in the computation of binomial coefficients because only addition, and not multiplication, of integers is needed to use this recursive definition.

Pascal’s identity is the basis for a geometric arrangement of the binomial coefficients in a triangle, as shown in Figure 1.

The \(n \)th row in the triangle consists of the binomial coefficients

\[
\binom{n}{k}, \quad k = 0, 1, \ldots, n.
\]

This triangle is known as **Pascal’s triangle**. Pascal’s identity shows that when two adjacent binomial coefficients in this triangle are added, the binomial coefficient in the next row between these two coefficients is produced.

FIGURE 1 Pascal’s Triangle.

Blaise Pascal exhibited his talents at an early age, although his father, who had made discoveries in analytic geometry, kept mathematics books away from him to encourage other interests. At 16 Pascal discovered an important result concerning conic sections. At 18 he designed a calculating machine, which he built and sold. Pascal, along with Fermat, laid the foundations for the modern theory of probability. In this work, he made new discoveries concerning what is now called Pascal’s triangle. In 1654, Pascal abandoned his mathematical pursuits to devote himself to theology. After this, he returned to mathematics only once. One night, distracted by a severe toothache, he sought comfort by studying the mathematical properties of the cycloid. Miraculously, his pain subsided, which he took as a sign of divine approval of the study of mathematics.
Other Identities Involving Binomial Coefficients

We conclude this section with combinatorial proofs of two of the many identities enjoyed by the binomial coefficients.

Theorem 3

Vandermonde’s Identity

Let m, n, and r be nonnegative integers with r not exceeding either m or n. Then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}.$$

Remark: This identity was discovered by mathematician Alexandre-Théophile Vandermonde in the eighteenth century.

Proof: Suppose that there are m items in one set and n items in a second set. Then the total number of ways to pick r elements from the union of these sets is $\binom{m+n}{r}$.

Another way to pick r elements from the union is to pick k elements from the second set and then $r-k$ elements from the first set, where k is an integer with $0 \leq k \leq r$. Because there are $\binom{n}{k}$ ways to choose k elements from the second set and $\binom{m}{r-k}$ ways to choose $r-k$ elements from the first set, the product rule tells us that this can be done in $\binom{m}{r-k} \binom{n}{k}$ ways. Hence, the total number of ways to pick r elements from the union also equals $\sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$.

We have found two expressions for the number of ways to pick r elements from the union of a set with m items and a set with n items. Equating them gives us Vandermonde’s identity.

Corollary 4 follows from Vandermonde’s identity.

Corollary 4

If n is a nonnegative integer, then

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2.$$

Proof: We use Vandermonde’s identity with $m = r = n$ to obtain

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{n-k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k}^2.$$

The last equality was obtained using the identity $\binom{n}{k} = \binom{n}{n-k}$.

Alexandre-Théophile Vandermonde (1735–1796) Because Alexandre-Théophile Vandermonde was a sickly child, his physician father directed him to a career in music. However, he later developed an interest in mathematics. His complete mathematical work consists of four papers published in 1771–1772. These papers include fundamental contributions on the roots of equations, on the theory of determinants, and on the knight’s tour problem (introduced in the exercises in Section 10.5). Vandermonde’s interest in mathematics lasted for only 2 years. Afterward, he published papers on harmony, experiments with cold, and the manufacture of steel. He also became interested in politics, joining the cause of the French revolution and holding several different positions in government.
We can prove combinatorial identities by counting bit strings with different properties, as the proof of Theorem 4 will demonstrate.

THEOREM 4

Let n and r be nonnegative integers with $r \leq n$. Then

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}.$$

Proof: We use a combinatorial proof. By Example 14 in Section 6.3, the left-hand side, $\binom{n+1}{r+1}$, counts the bit strings of length $n+1$ containing $r+1$ ones.

We show that the right-hand side counts the same objects by considering the cases corresponding to the possible locations of the final 1 in a string with $r+1$ ones. This final one must occur at position $r+1$, $r+2$, \ldots, or $n+1$. Furthermore, if the last one is the 4th bit there must be r ones among the first $k-1$ positions. Consequently, by Example 14 in Section 6.3, there are $\binom{r+1}{r}$ such bit strings. Summing over k with $r+1 \leq k \leq n+1$, we find that there are

$$\sum_{k=r+1}^{n+1} \binom{k-1}{r} = \sum_{j=r}^{n} \binom{j}{r}$$

bit strings of length n containing exactly $r+1$ ones. (Note that the last step follows from the change of variables $j = k - 1$.) Because the left-hand side and the right-hand side count the same objects, they are equal. This completes the proof.

Exercises

1. Find the expansion of $(x + y)^5$
 a) using combinatorial reasoning, as in Example 1.
 b) by using the binomial theorem.

2. Find the expansion of $(x + y)^7$
 a) using combinatorial reasoning, as in Example 1.
 b) by using the binomial theorem.

3. Find the expansion of $(x + y)^8$.

4. Find the coefficient of x^3y^5 in $(x + y)^8$.

5. How many terms are there in the expansion of $(x + y)^{100}$ after like terms are collected?

6. What is the coefficient of x^7 in $(1 + x)^{13}$?

7. What is the coefficient of x^5 in $(2 - x)^{19}$?

8. What is the coefficient of x^3y^8 in the expansion of $(3x + 2y)^{17}$?

9. What is the coefficient of $x^{100}y^{89}$ in the expansion of $(2x - 3y)^{200}$?

* 10. Give a formula for the coefficient of x^k in the expansion of $(x + 1/x)^{100}$, where k is an integer.

* 11. Give a formula for the coefficient of x^k in the expansion of $(x^2 - 1/x)^{100}$, where k is an integer.

12. The row of Pascal’s triangle containing the binomial coefficients $\binom{n}{k}$, $0 \leq k \leq 10$, is:

1 10 45 120 210 252 210 120 45 10 1

Use Pascal’s identity to produce the row immediately following this row in Pascal’s triangle.

13. What is the row of Pascal’s triangle containing the binomial coefficients $\binom{n}{k}$, $0 \leq k \leq 9$?

14. Show that if n is a positive integer, then $1 = \binom{n}{0} < \binom{n}{1} < \cdots < \binom{n}{\lfloor n/2 \rfloor} \cdots > \binom{n}{n/2} > \binom{n}{n} = 1$.

15. Show that $\binom{n}{k} \leq 2^n$ for all positive integers n and all integers k with $0 \leq k \leq n$.

16. a) Use Exercise 14 and Corollary 1 to show that if n is an integer greater than 1, then $\binom{n}{k} \geq 2^{n-1}/n$.
 b) Conclude from part (a) that if n is a positive integer, then $\binom{n}{k} \geq 4^n/2n$.

17. Show that if n and k are integers with $1 \leq k \leq n$, then $\binom{n}{k} \leq n!/(k!(n-k)!)$.

18. Suppose that k is an integer with $b \geq 7$. Use the binomial theorem and the appropriate row of Pascal’s triangle to find the base-b expansion of $(11)_b$ [that is, the fourth power of the number $(11)_b$ in base-b notation].

19. Prove Pascal’s identity, using the formula for $\binom{n}{k}$.

20. Suppose that k and n are integers with $1 \leq k < n$. Prove the hexagon identity

$$\binom{n}{k} = \binom{n+1}{k+1} - \binom{n+1}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

which relates terms in Pascal’s triangle that form a hexagon.
21. Show that if \(n \) and \(k \) are integers with \(1 \leq k \leq n \), then \(k^2 \leq n^2 \).
 a) using a combinatorial proof. [Hint: Show that the two sides
 of the identity count the number of ways to select
 a subset with \(k \) elements from a set with \(n \) elements
 and then an element of this subset.]
 b) using an algebraic proof based on the formula for \(\binom{n}{k} \)
 given in Theorem 2 in Section 6.3.
22. Give a combinatorial proof that \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \) whenever \(n, r, \) and \(k \)
 are nonnegative integers with \(r \leq n \) and \(k \leq r \),
 a) using a combinatorial argument.
 b) using an argument based on the formula for the
 number of \(r \)-combinations of a set with \(n \) elements.
23. Show that if \(n \) and \(k \) are positive integers, then
 \[
 \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.
 \]
 Use this identity to construct an inductive definition of
 the binomial coefficients.
24. Show that if \(p \) is a prime and \(k \) is an integer such that
 \(1 \leq k \leq p-1 \), then \(p \) divides \(\binom{p}{k} \).
25. Let \(n \) be a positive integer. Show that
 \[
 \binom{2n}{n} = \frac{(2n)!}{n! \cdot n!} = \frac{(2n+1)!}{(n+1)! \cdot n!}.
 \]
 *26. Let \(n \) and \(k \) be integers with \(1 \leq k \leq n \). Show that
 \[
 \sum_{k=1}^{n} \binom{n}{k} = \frac{(2n+1)}{1}.
 \]
 *27. Prove the hockey stick identity
 \[
 \sum_{k=0}^{n} \binom{n+k}{k} = \binom{n+r+1}{r}
 \]
 whenever \(a \) and \(r \) are positive integers,
 a) using a combinatorial argument.
 b) by algebraic manipulation.
 *29. Give a combinatorial proof that \(\sum_{k=1}^{n} k^2 = n^2 + n^2 - 1 \).
 [Hint: Count in two ways the number of ways to select a
 committee, with \(n \) members from a group of \(n \)
 mathematics professors and \(n \) computer science professors,
 such that the chairperson of the committee is a mathematics
 professor.]
30. Give a combinatorial proof that \(\sum_{k=1}^{n} k^3 = n^2 + n^2 - 1 \).
 [Hint: Count in two ways the number of ways to select a
 committee, with \(n \) members from a group of \(n \)
 mathematics professors and \(n \) computer science professors,
 such that the chairperson of the committee is a mathematics
 professor.]
31. Show that a nonempty set has the same number of subsets
 with an odd number of elements as it does subsets with
 an even number of elements.
 *32. Prove the binomial theorem using mathematical induction.
33. In this exercise we will count the number of paths in the
 \(xy \)-plane from the point (0, 0) to some other pair of points
 \((m, n) \), where \(m \) and \(n \) are positive integers.
 a) Show that if \(a \) is a positive integer, then \(\sum_{k=0}^{a} \binom{a}{k} = 2^a \).
 [Hint: Consider the number of \(a \)-tuples of 0s and 1s.
 a 0 represents a move one unit to the right and
 a 1 represents a move one unit upward.]
 b) Conclude from part (a) that there are \(\binom{a}{1} \) paths of
 the desired type.
34. Use Exercise 33 to give an alternative proof of Corollary 2
 in Section 6.3, which states that \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \) whenever \(n \)
 is an integer with \(0 \leq k \leq n \). [Hint: Consider the number
 of paths of the type described in Exercise 33 from (0, 0)
 to \((n-k, k) \) and from (0, 0) to \((k, n-k) \).]
35. Use Exercise 33 to prove Theorem 4. [Hint: Count the
 number of paths with \(n \) steps of the type described in
 Exercise 33. Every such path must end at one of the points
 \((n-k, k) \) for \(k = 0, 1, 2, \ldots, n \).]
36. Use Exercise 33 to prove Pascal’s identity. [Hint: Show that
 a path of the type described in Exercise 33 from
 (0, 0) to \((n+1-k, k) \) passes through either
 \((n+1-k, k-1) \) or \((n-k, k) \), but not through both.]
37. Use Exercise 33 to prove the hockey stick identity from
 Exercise 27. [Hint: First, note that the number of
 paths from (0, 0) to \((n+1, r) \) equals \(\binom{n+1}{r} \).
 Second, count the number of paths by summing the number
 of these paths that start by going \(k \) units upward for
 \(k = 0, 1, 2, \ldots, r \).]
38. Give a combinatorial proof that if \(n \) is a positive integer
 then \(\sum_{k=1}^{n} \binom{n}{k} = n^2 \binom{n}{n-1} \).
 [Hint: Show that both sides count the number of subsets of
 a set of \(n \) elements together with two not necessarily distinct elements
 from this subset. Furthermore, express the right-hand side
 as \(n(n-1) \binom{n}{n-2} + n2\binom{n}{n-1} \).]
39. Determine a formula involving binomial coefficients for
 the \(n \)th term of a sequence if its initial terms are those
 listed. [Hint: Looking at Pascal’s triangle will be helpful.